Surface-acoustic-wave generation by thermoelasticity

Short laser pulses were used for generating surface acoustic waves (SAWs) on aluminium via the thermoelastic effect. There exists a simple relation between the temporal and spatial pulse width at which the SAWs exhibit maximal amplitude.

2020 ◽  
Vol 27 ◽  
pp. 57-61
Author(s):  
Radim Kudělka ◽  
Lukáš Václavek ◽  
Jan Tomáštík ◽  
Sabina Malecová ◽  
Radim Čtvrtlík

Knowledge of mechanical properties of thin films is essential for most of their applications. However, their determination can be problematic for very thin films. LAW (Laser-induced acoustic waves) is a combined acousto-optic method capable of measuring films with thickness from few nanometers. It utilizes ultrasound surface waves which are excited via short laser pulses and detected by a PVDF foil. Properties such as Young’s modulus, Poisson’s ratio and density of both the film and the substrate as well as film thickness can be explored.Results from the LAW method are successfully compared with nanoindentation for Young’s modulus evaluation and with optical method for film thickness evaluation and also with literature data. Application of LAW for anisotropy mapping of materials with cubic crystallographic lattice is also demonstrated.


2003 ◽  
Vol 74 (1) ◽  
pp. 453-455 ◽  
Author(s):  
Al. A. Kolomenskii ◽  
S. N. Jerebtsov ◽  
H. A. Schuessler

Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1200 ◽  
Author(s):  
Taijin Wang ◽  
Yonggang Wang ◽  
Jiang Wang ◽  
Jing Bai ◽  
Guangying Li ◽  
...  

In this work, a Tungsten disulfide (WS2) reflective saturable absorber (SA) fabricated using the Langmuir–Blodgett technique was used in a solid state Nd:YVO4 laser operating at 1.34 µm. A Q-switched laser was constructed. The shortest pulse width was 409 ns with the repetition rate of 159 kHz, and the maximum output power was 338 mW. To the best of our knowledge, it is the first time that short laser pulses have been generated in a solid state laser at 1.34 µm using a reflective WS2 SA fabricated by the Langmuir–Blodgett method.


2002 ◽  
Vol 92 (1) ◽  
pp. 564-571 ◽  
Author(s):  
J. P. Gospodyn ◽  
A. Sardarli ◽  
A. M. Brodnikovski ◽  
R. Fedosejevs

2019 ◽  
Vol 9 (15) ◽  
pp. 3094 ◽  
Author(s):  
Naser Alijabbari ◽  
Suhail S. Alshahrani ◽  
Alexander Pattyn ◽  
Mohammad Mehrmohammadi

Photoacoustic (PA) imaging is a methodology that uses the absorption of short laser pulses by endogenous or exogenous chromophores within human tissue, and the subsequent generation of acoustic waves acquired by an ultrasound (US) transducer, to form an image that can provide functional and molecular information. Amongst the various types of PA imaging, PA tomography (PAT) has been proposed for imaging pathologies such as breast cancer. However, the main challenge for PAT imaging is the deliverance of sufficient light energy horizontally through an imaging cross-section as well as vertically. In this study, three different illumination methods are compared for a full-ring ultrasound (US) PAT system. The three distinct illumination setups are full-ring, diffused-beam, and point source illumination. The full-ring system utilizes a cone mirror and parabolic reflector to create the ringed-shaped beam for PAT, while the diffuse scheme uses a light diffuser to expand the beam, which illuminates tissue-mimicking phantoms. The results indicate that the full-ring illumination is capable of providing a more uniform fluence irrespective of the vertical depth of the imaged cross-section, while the point source and diffused illumination methods provide a higher fluence at regions closer to the point of entry, which diminishes with depth. In addition, a set of experiments was conducted to determine the optimum position of ring-illumination with respect to the position of the acoustic detectors to achieve the highest signal-to-noise ratio.


Author(s):  
Kemining W. Yeh ◽  
Richard S. Muller ◽  
Wei-Kuo Wu ◽  
Jack Washburn

Considerable and continuing interest has been shown in the thin film transducer fabrication for surface acoustic waves (SAW) in the past few years. Due to the high degree of miniaturization, compatibility with silicon integrated circuit technology, simplicity and ease of design, this new technology has played an important role in the design of new devices for communications and signal processing. Among the commonly used piezoelectric thin films, ZnO generally yields superior electromechanical properties and is expected to play a leading role in the development of SAW devices.


1998 ◽  
Vol 77 (5) ◽  
pp. 1195-1202
Author(s):  
Andreas Knabchen Yehoshua, B. Levinson, Ora

Sign in / Sign up

Export Citation Format

Share Document