Decay phases of Swift X-ray afterglows and the forward-shock model

Author(s):  
A Panaitescu

The X-ray flux of the gamma-ray burst (GRB) afterglows monitored by the Swift satellite from January 2005 to July 2006 displays one to four phases of flux power-law decay. In chronological order, they are: the GRB tail, the ‘hump’, the standard decay and the post-jet-break decay. More than half of the GRB tails can be identified with the large-angle emission produced during the burst (but arriving later at observer). The remaining, slower GRB tails imply that the gamma-ray mechanism continues to radiate after the burst, as also suggested by the frequent occurrence of X-ray flares during the burst tail. The several GRB tails exhibiting a slow unbroken power-law decay until 100 ks must be attributed to the forward shock. In fact, the decay of most GRB tails is also consistent with that of the forward-shock emission from a narrow jet. The X-ray light-curve hump may be due to an increase of the kinetic energy per solid angle of the forward-shock region visible to the observer, caused by either the transfer of energy from ejecta to the forward shock or the emergence of the emission from an outflow seen from a location outside the jet opening. The decay following the X-ray light-curve hump is consistent with the emission from an adiabatic blast wave but, contrary to expectations, the light-curve decay index and spectral slope during this phase are not correlated. The X-ray light curves of two dozens X-ray afterglows that followed for more than a week do not exhibit a jet break, in contrast with the behaviour of pre-Swift optical afterglows, which displayed jet breaks at 0.5–2 days. Nevertheless, the X-ray light curves of several Swift afterglows show a second steepening break at 0.4–3 days that is consistent with the break expected for a jet when its edge becomes visible to the observer.

Author(s):  
Paul T O'Brien ◽  
Richard Willingale

We present an analysis of early Burst Alert Telescope and X-ray Telescope data for 107 gamma-ray bursts (GRBs) observed by the Swift satellite. We use these data to examine the behaviour of the X-ray light curve and propose a classification scheme for GRBs based on this behaviour. As found for previous smaller samples, the earliest X-ray light curve can be well described by an exponential, which relaxes into a power-law, often with flares superimposed. The later emission is well fit using a similar functional form and we find that these two functions provide a good description of the entire X-ray light curve. For the prompt emission, the transition time between the exponential and the power-law gives a well-defined time-scale, T p , for the burst duration. We use T p , the spectral index of the prompt emission, β p , and the prompt power-law decay index, α p , to define four classes of burst: short, slow, fast and soft. Bursts with slowly declining emission have spectral and temporal properties similar to the short bursts despite having longer durations. Some of these GRBs may therefore arise from similar progenitors including several types of binary system. Short bursts tend to decline more gradually than longer duration bursts and hence emit a significant fraction of their total energy at times greater than T p . This may be due to differences in the environment or the progenitor for long, fast bursts.


2018 ◽  
Vol 27 (10) ◽  
pp. 1844012
Author(s):  
Elena Mazaeva ◽  
Alexei Pozanenko ◽  
Pavel Minaev

We discuss the inhomogeneous behavior of gamma-ray burst afterglow light curves in optic. We use well-sampled light curves based on mostly our own observations to find and identify deviations (inhomogeneities) from broken power law. By the inhomogeneous behavior we mean flashes, bumps, slow deviations from power law (wiggles) in a light curve. In particular we report parameters of broken power law, describe phenomenology, compare optical light curves with X-ray ones and classify the inhomogeneities. We show that the duration of the inhomogeneities correlates with their peak time relative to gamma-ray burst (GRB) trigger and the correlation is the same for all types of inhomogeneities.


2008 ◽  
Vol 17 (09) ◽  
pp. 1359-1362 ◽  
Author(s):  
◽  
S. D. VERGANI ◽  
C. GUIDORZI

GRB 070311 was a long burst that triggered INTEGRAL. We present prompt γ-ray, early NIR/optical, late optical and X-ray data on this burst and its afterglow. Interestingly, the H-band light curve acquired with REM exhibits two pulses at 80 and 140 s after the peak of the γ-ray burst, with possible evidence for a contemporaneous faint γ-ray tail. The late optical and X-ray afterglow underwent a rebrightening between 3 × 104 and 2 × 105 s after the burst with energy comparable with that of the prompt emission extrapolated in the X-ray band. After fitting the early γ-ray and optical light curves, we modelled the time profile of the late rebrightening as the time-rescaled version of the prompt γ-ray pulse over an underlying power law. This result supports a common origin for both prompt and late X-ray/optical afterglow rebrightening of GRB 070311 within the external shock scenario.


1989 ◽  
Vol 104 (1) ◽  
pp. 289-298
Author(s):  
Giovanni Peres

AbstractThis paper discusses the hydrodynamic modeling of flaring plasma confined in magnetic loops and its objectives within the broader scope of flare physics. In particular, the Palermo-Harvard model is discussed along with its applications to the detailed fitting of X-ray light curves of solar flares and to the simulation of high-resolution Caxix spectra in the impulsive phase. These two approaches provide complementary constraints on the relevant features of solar flares. The extension to the stellar case, with the fitting of the light curve of an X-ray flare which occurred on Proxima Centauri, demonstrates the feasibility of using this kind of model for stars too. Although the stellar observations do not provide the wealth of details available for the Sun, and, therefore, constrain the model more loosely, there are strong motivations to pursue this line of research: the wider range of physical parameters in stellar flares and the possibility of studying further the solar-stellar connection.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
J. J. Geng ◽  
Y. F. Huang

The detection of optical rebrightenings and X-ray plateaus in the afterglows of gamma-ray bursts (GRBs) challenges the generic external shock model. Recently, we have developed a numerical method to calculate the dynamics of the system consisting of a forward shock and a reverse shock. Here, we briefly review the applications of this method in the afterglow theory. By relating these diverse features to the central engines of GRBs, we find that the steep optical rebrightenings would be caused by the fall-back accretion of black holes, while the shallow optical rebrightenings are the consequence of the injection of the electron-positron-pair wind from the central magnetar. These studies provide useful ways to probe the characteristics of GRB central engines.


2008 ◽  
Vol 386 (2) ◽  
pp. 859-863 ◽  
Author(s):  
P. A. Curran ◽  
A. J. van der Horst ◽  
R. A. M. J. Wijers
Keyword(s):  

2006 ◽  
Vol 369 (4) ◽  
pp. 2059-2064 ◽  
Author(s):  
A. Panaitescu ◽  
P. Mészáros ◽  
D. Burrows ◽  
J. Nousek ◽  
N. Gehrels ◽  
...  
Keyword(s):  

2020 ◽  
Vol 499 (2) ◽  
pp. 3006-3018
Author(s):  
Bangzheng Sun ◽  
Marina Orio ◽  
Andrej Dobrotka ◽  
Gerardo Juan Manuel Luna ◽  
Sergey Shugarov ◽  
...  

ABSTRACT We present X-ray observations of novae V2491 Cyg and KT Eri about 9 yr post-outburst of the dwarf nova and post-nova candidate EY Cyg, and of a VY Scl variable. The first three objects were observed with XMM–Newton, KT Eri also with the Chandra ACIS-S camera, V794 Aql with the Chandra ACIS-S camera and High Energy Transmission Gratings. The two recent novae, similar in outburst amplitude and light curve, appear very different at quiescence. Assuming half of the gravitational energy is irradiated in X-rays, V2491 Cyg is accreting at $\dot{m}=1.4\times 10^{-9}{\!-\!}10^{-8}\,{\rm M}_\odot \,{\rm yr}^{-1}$, while for KT Eri, $\dot{m}\lt 2\times 10^{-10}{\rm M}_\odot \,{\rm yr}$. V2491 Cyg shows signatures of a magnetized WD, specifically of an intermediate polar. A periodicity of  39 min, detected in outburst, was still measured and is likely due to WD rotation. EY Cyg is accreting at $\dot{m}\sim 1.8\times 10^{-11}{\rm M}_\odot \,{\rm yr}^{-1}$, one magnitude lower than KT Eri, consistently with its U Gem outburst behaviour and its quiescent UV flux. The X-rays are modulated with the orbital period, despite the system’s low inclination, probably due to the X-ray flux of the secondary. A period of  81 min is also detected, suggesting that it may also be an intermediate polar. V794 Aql had low X-ray luminosity during an optically high state, about the same level as in a recent optically low state. Thus, we find no clear correlation between optical and X-ray luminosity: the accretion rate seems unstable and variable. The very hard X-ray spectrum indicates a massive WD.


2019 ◽  
Vol 490 (2) ◽  
pp. 1774-1783 ◽  
Author(s):  
Will Lockhart ◽  
Samuel E Gralla ◽  
Feryal Özel ◽  
Dimitrios Psaltis

ABSTRACT Thermal X-ray emission from rotation-powered pulsars is believed to originate from localized ‘hotspots’ on the stellar surface occurring where large-scale currents from the magnetosphere return to heat the atmosphere. Light-curve modelling has primarily been limited to simple models, such as circular antipodal emitting regions with constant temperature. We calculate more realistic temperature distributions within the polar caps, taking advantage of recent advances in magnetospheric theory, and we consider their effect on the predicted light curves. The emitting regions are non-circular even for a pure dipole magnetic field, and the inclusion of an aligned magnetic quadrupole moment introduces a north–south asymmetry. As the quadrupole moment is increased, one hotspot grows in size before becoming a thin ring surrounding the star. For the pure dipole case, moving to the more realistic model changes the light curves by $5\!-\!10{{\, \rm per\, cent}}$ for millisecond pulsars, helping to quantify the systematic uncertainty present in current dipolar models. Including the quadrupole gives considerable freedom in generating more complex light curves. We explore whether these simple dipole+quadrupole models can account for the qualitative features of the light curve of PSR J0437−4715.


2020 ◽  
Vol 494 (3) ◽  
pp. 4057-4068
Author(s):  
Mayukh Pahari ◽  
I M McHardy ◽  
Federico Vincentelli ◽  
Edward Cackett ◽  
Bradley M Peterson ◽  
...  

ABSTRACT Using a month-long X-ray light curve from RXTE/PCA and 1.5 month-long UV continuum light curves from IUE spectra in 1220–1970 Å, we performed a detailed time-lag study of the Seyfert 1 galaxy NGC 7469. Our cross-correlation analysis confirms previous results showing that the X-rays are delayed relative to the UV continuum at 1315 Å by 3.49 ± 0.22 d, which is possibly caused by either propagating fluctuation or variable Comptonization. However, if variations slower than 5 d are removed from the X-ray light curve, the UV variations then lag behind the X-ray variations by 0.37 ± 0.14 d, consistent with reprocessing of the X-rays by a surrounding accretion disc. A very similar reverberation delay is observed between Swift/XRT X-ray and Swift/UVOT UVW2, U light curves. Continuum light curves extracted from the Swift/GRISM spectra show delays with respect to X-rays consistent with reverberation. Separating the UV continuum variations faster and slower than 5 d, the slow variations at 1825 Å lag those at 1315 Å by 0.29 ± 0.06 d, while the fast variations are coincident (0.04 ± 0.12 d). The UV/optical continuum reverberation lag from IUE, Swift, and other optical telescopes at different wavelengths are consistent with the relationship: τ ∝ λ4/3, predicted for the standard accretion disc theory while the best-fitting X-ray delay from RXTE and Swift/XRT shows a negative X-ray offset of ∼0.38 d from the standard disc delay prediction.


Sign in / Sign up

Export Citation Format

Share Document