scholarly journals The radio/gamma-ray connection from 120 MHz to 230 GHz

Author(s):  
Marcello Giroletti ◽  
Filippo D'Ammando ◽  
Monica Orienti ◽  
Rocco Lico

Radio loud active galactic nuclei are composed of different spatial features, each one characterized by different spectral properties in the radio band. Among them, blazars are the most common class of sources detected at gamma-rays by \fermi, and their radio emission is dominated by the flat spectrum compact core. In this contribution, we explore the connection between emission at high energy revealed by \fermi\ and at radio frequency. Taking as a reference the strong and very highly significant correlation found between gamma rays and cm-$\lambda$ radio emission, we explore different behaviours found as we change the energy range in gamma rays and in radio, therefore changing the physical parameters of the zones involved in the radiation emission. We find that the correlation weakens when we consider (1) gamma rays of energy above 10 GeV (except for high synchrotron peaked blazars) or (2) low frequency radio data taken by the Murchison Widefield Array; on the other hand, the correlation strengthens when we consider mm-$\lambda$ data taken by ALMA.

Author(s):  
G. E. Anderson ◽  
P. J. Hancock ◽  
A. Rowlinson ◽  
M. Sokolowski ◽  
A. Williams ◽  
...  

Abstract Here we present stringent low-frequency (185 MHz) limits on coherent radio emission associated with a short-duration gamma-ray burst (SGRB). Our observations of the short gamma-ray burst (GRB) 180805A were taken with the upgraded Murchison Widefield Array (MWA) rapid-response system, which triggered within 20s of receiving the transient alert from the Swift Burst Alert Telescope, corresponding to 83.7 s post-burst. The SGRB was observed for a total of 30 min, resulting in a $3\sigma$ persistent flux density upper limit of 40.2 mJy beam–1. Transient searches were conducted at the Swift position of this GRB on 0.5 s, 5 s, 30 s and 2 min timescales, resulting in $3\sigma$ limits of 570–1 830, 270–630, 200–420, and 100–200 mJy beam–1, respectively. We also performed a dedispersion search for prompt signals at the position of the SGRB with a temporal and spectral resolution of 0.5 s and 1.28 MHz, respectively, resulting in a $6\sigma$ fluence upper-limit range from 570 Jy ms at DM $=3\,000$ pc cm–3 ( $z\sim 2.5$ ) to 1 750 Jy ms at DM $=200$ pc cm–3 ( $z\sim 0.1)$ , corresponding to the known redshift range of SGRBs. We compare the fluence prompt emission limit and the persistent upper limit to SGRB coherent emission models assuming the merger resulted in a stable magnetar remnant. Our observations were not sensitive enough to detect prompt emission associated with the alignment of magnetic fields of a binary neutron star just prior to the merger, from the interaction between the relativistic jet and the interstellar medium (ISM) or persistent pulsar-like emission from the spin-down of the magnetar. However, in the case of a more powerful SGRB (a gamma-ray fluence an order of magnitude higher than GRB 180805A and/or a brighter X-ray counterpart), our MWA observations may be sensitive enough to detect coherent radio emission from the jet-ISM interaction and/or the magnetar remnant. Finally, we demonstrate that of all current low- frequency radio telescopes, only the MWA has the sensitivity and response times capable of probing prompt emission models associated with the initial SGRB merger event.


2019 ◽  
Vol 489 (3) ◽  
pp. 3316-3333 ◽  
Author(s):  
A Rowlinson ◽  
G E Anderson

ABSTRACT The presence and detectability of coherent radio emission from compact binary mergers (containing at least one neutron star) remains poorly constrained due to large uncertainties in the models. These compact binary mergers may initially be detected as short gamma-ray bursts or via their gravitational wave emission. Several radio facilities have developed rapid response modes enabling them to trigger on these events and search for this emission. For this paper, we constrain this coherent radio emission using the deepest available constraints for GRB 150424A, which were obtained via a triggered observation with the Murchison Widefield Array. We then expand this analysis to determine the properties of magnetar merger remnants that may be formed via a general population of binary neutron star mergers. Our results demonstrate that many of the potential coherent emission mechanisms that have been proposed for such events can be detected or very tightly constrained by the complementary strategies used by the current generation of low-frequency radio telescopes.


2018 ◽  
Vol 617 ◽  
pp. A91 ◽  
Author(s):  
◽  
S. Ansoldi ◽  
L. A. Antonelli ◽  
C. Arcaro ◽  
D. Baack ◽  
...  

We report on the detection of flaring activity from the Fanaroff-Riley I radio galaxy NGC 1275 in very-high-energy (VHE, E > 100 GeV) gamma rays with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes. The observations were performed between 2016 September and 2017 February, as part of a monitoring programme. The brightest outburst, with ∼1.5 times the Crab Nebula flux above 100 GeV (C.U.), was observed during the night between 2016 December 31 and 2017 January 1. The flux is fifty times higher than the mean flux previously measured in two observational campaigns between 2009 October and 2010 February and between 2010 August and 2011 February. Significant variability of the day-by-day light curve was measured. The shortest flux-doubling timescale was found to be of (611 ± 101) min. The spectra calculated for this period are harder and show a significant curvature with respect to the ones obtained in the previous campaigns. The combined spectrum of the MAGIC data during the strongest flare state and simultaneous data from the Fermi-LAT around 2017 January 1 follows a power law with an exponential cutoff at the energy (492 ± 35) GeV. We further present simultaneous optical flux density measurements in the R-band obtained with the Kungliga Vetenskaps Akademien (KVA) telescope and investigate the correlation between the optical and gamma-ray emission. Due to possible internal pair-production, the fast flux variability constrains the Doppler factor to values that are inconsistent with a large viewing angle as observed in the radio band. We investigate different scenarios for the explanation of fast gamma-ray variability, namely emission from magnetospheric gaps, relativistic blobs propagating in the jet (mini-jets), or an external cloud (or star) entering the jet. We find that the only plausible model to account for the luminosities here observed would be the production of gamma rays in a magnetospheric gap around the central black hole, only in the eventuality of an enhancement of the magnetic field threading the hole from its equipartition value with the gas pressure in the accretion flow. The observed gamma-ray flare therefore challenges all the discussed models for fast variability of VHE gamma-ray emission in active galactic nuclei.


2018 ◽  
Vol 620 ◽  
pp. A185 ◽  
Author(s):  
K. Nilsson ◽  
E. Lindfors ◽  
L. O. Takalo ◽  
R. Reinthal ◽  
A. Berdyugin ◽  
...  

We present ten years of R-band monitoring data of 31 northern blazars which were either detected at very high-energy (VHE) gamma rays or listed as potential VHE gamma-ray emitters. The data comprise 11 820 photometric data points in the R-band obtained in 2002–2012. We analyzed the light curves by determining their power spectral density (PSD) slopes assuming a power-law dependence with a single slope β and a Gaussian probability density function (PDF). We used the multiple fragments variance function (MFVF) combined with a forward-casting approach and likelihood analysis to determine the slopes and perform extensive simulations to estimate the uncertainties of the derived slopes. We also looked for periodic variations via Fourier analysis and quantified the false alarm probability through a large number of simulations. Comparing the obtained PSD slopes to values in the literature, we find the slopes in the radio band to be steeper than those in the optical and gamma rays. Our periodicity search yielded one target, Mrk 421, with a significant (p <  5%) period. Finding one significant period among 31 targets is consistent with the expected false alarm rate, but the period found in Mrk 421 is very strong and deserves further consideration.


Author(s):  
P. J. Hancock ◽  
G. E. Anderson ◽  
A. Williams ◽  
M. Sokolowski ◽  
S. E. Tremblay ◽  
...  

Abstract The Murchison Widefield Array (MWA) is an electronically steered low-frequency (<300 MHz) radio interferometer, with a ‘slew’ time less than 8 s. Low-frequency (∼100 MHz) radio telescopes are ideally suited for rapid response follow-up of transients due to their large field of view, the inverted spectrum of coherent emission, and the fact that the dispersion delay between a 1 GHz and 100 MHz pulse is on the order of 1–10 min for dispersion measures of 100–2000 pc/cm3. The MWA has previously been used to provide fast follow-up for transient events including gamma-ray bursts (GRBs), fast radio bursts (FRBs), and gravitational waves, using systems that respond to gamma-ray coordinates network packet-based notifications. We describe a system for automatically triggering MWA observations of such events, based on Virtual Observatory Event standard triggers, which is more flexible, capable, and accurate than previous systems. The system can respond to external multi-messenger triggers, which makes it well-suited to searching for prompt coherent radio emission from GRBs, the study of FRBs and gravitational waves, single pulse studies of pulsars, and rapid follow-up of high-energy superflares from flare stars. The new triggering system has the capability to trigger observations in both the regular correlator mode (limited to ≥0.5 s integrations) and using the Voltage Capture System (VCS, 0.1 ms integration) of the MWA and represents a new mode of operation for the MWA. The upgraded standard correlator triggering capability has been in use since MWA observing semester 2018B (July–Dec 2018), and the VCS and buffered mode triggers will become available for observing in a future semester.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 220
Author(s):  
Emil Khalikov

The intrinsic spectra of some distant blazars known as “extreme TeV blazars” have shown a hint at an anomalous hardening in the TeV energy region. Several extragalactic propagation models have been proposed to explain this possible excess transparency of the Universe to gamma-rays starting from a model which assumes the existence of so-called axion-like particles (ALPs) and the new process of gamma-ALP oscillations. Alternative models suppose that some of the observable gamma-rays are produced in the intergalactic cascades. This work focuses on investigating the spectral and angular features of one of the cascade models, the Intergalactic Hadronic Cascade Model (IHCM) in the contemporary astrophysical models of Extragalactic Magnetic Field (EGMF). For IHCM, EGMF largely determines the deflection of primary cosmic rays and electrons of intergalactic cascades and, thus, is of vital importance. Contemporary Hackstein models are considered in this paper and compared to the model of Dolag. The models assumed are based on simulations of the local part of large-scale structure of the Universe and differ in the assumptions for the seed field. This work provides spectral energy distributions (SEDs) and angular extensions of two extreme TeV blazars, 1ES 0229+200 and 1ES 0414+009. It is demonstrated that observable SEDs inside a typical point spread function of imaging atmospheric Cherenkov telescopes (IACTs) for IHCM would exhibit a characteristic high-energy attenuation compared to the ones obtained in hadronic models that do not consider EGMF, which makes it possible to distinguish among these models. At the same time, the spectra for IHCM models would have longer high energy tails than some available spectra for the ALP models and the universal spectra for the Electromagnetic Cascade Model (ECM). The analysis of the IHCM observable angular extensions shows that the sources would likely be identified by most IACTs not as point sources but rather as extended ones. These spectra could later be compared with future observation data of such instruments as Cherenkov Telescope Array (CTA) and LHAASO.


2019 ◽  
Vol 15 (S356) ◽  
pp. 375-375
Author(s):  
Sarah White

AbstractLow-frequency radio emission allows powerful active galactic nuclei (AGN) to be selected in a way that is unaffected by dust obscuration and orientation of the jet axis. It also reveals past activity (e.g. radio lobes) that may not be evident at higher frequencies. Currently, there are too few “radio-loud” galaxies for robust studies in terms of redshift-evolution and/or environment. Hence our use of new observations from the Murchison Widefield Array (the SKA-Low precursor), over the southern sky, to construct the GLEAM 4-Jy Sample (1,860 sources at S151MHz > 4 Jy). This sample is dominated by AGN and is 10 times larger than the heavily relied-upon 3CRR sample (173 sources at S178MHz > 10 Jy) of the northern hemisphere. In order to understand how AGN influence their surroundings and the way galaxies evolve, we first need to correctly identify the galaxy hosting the radio emission. This has now been completed for the GLEAM 4-Jy Sample – through repeated visual inspection and extensive checks against the literature – forming a valuable, legacy dataset for investigating relativistic jets and their interplay with the environment.


2017 ◽  
Vol 12 (S331) ◽  
pp. 201-205
Author(s):  
A. J. Nayana ◽  
Poonam Chandra

AbstractHESS J1731−347 a.k.a. SNR G353.6−0.7 is one of the five known very high energy (VHE, Energy > 0.1 TeV) shell-type supernova remnants. We carried out Giant Metrewave Radio Telescope (GMRT) observations of this TeV SNR in 1390, 610 and 325 MHz bands. We detected the 325 and 610 MHz radio counterparts of the SNR G353.6−0.7 (Nayana et al. 2017). We also determined the spectral indices of individual filaments and our values are consistent with the non-thermal radio emission. We compared the radio morphology with that of VHE emission. The peak in radio emission corresponds to the faintest feature in the VHE emission. We explain this anti-correlated emission in a possible leptonic origin of the VHE γ-rays.


2020 ◽  
Vol 492 (4) ◽  
pp. 5980-5986
Author(s):  
M Araya

ABSTRACT G279.0+1.1 is a supernova remnant (SNR) with poorly known parameters, first detected as a dim radio source and classified as an evolved system. An analysis of data from the Fermi-Large Area Telescope (LAT) revealing for the first time an extended source of gamma-rays in the region is presented. The diameter of the GeV region found is ${\sim} 2{^{\circ}_{.}}8$, larger than the latest estimate of the SNR size from radio data. The gamma-ray emission covers most of the known shell and extends further to the north and east of the bulk of the radio emission. The photon spectrum in the 0.5–500 GeV range can be described by a simple power law, $\frac{\mathrm{ d}N}{\mathrm{ d}E} \propto E^{-\Gamma }$, with a spectral index of Γ = 1.86 ± 0.03stat ± 0.06sys. In the leptonic scenario, a steep particle spectrum is required and a distance lower than the previously estimated value of 3 kpc is favoured. The possibility that the high-energy emission results from electrons that already escaped the SNR is also investigated. A hadronic scenario for the gamma-rays yields a particle spectral index of ∼2.0 and no significant constraints on the distance. The production of gamma-rays in old SNRs is discussed. More observations of this source are encouraged to probe the true extent of the shell and its age.


Sign in / Sign up

Export Citation Format

Share Document