scholarly journals Design search and optimization in aerospace engineering

Author(s):  
A.J Keane ◽  
J.P Scanlan

In this paper, we take a design-led perspective on the use of computational tools in the aerospace sector. We briefly review the current state-of-the-art in design search and optimization (DSO) as applied to problems from aerospace engineering, focusing on those problems that make heavy use of computational fluid dynamics (CFD). This ranges over issues of representation, optimization problem formulation and computational modelling. We then follow this with a multi-objective, multi-disciplinary example of DSO applied to civil aircraft wing design, an area where this kind of approach is becoming essential for companies to maintain their competitive edge. Our example considers the structure and weight of a transonic civil transport wing, its aerodynamic performance at cruise speed and its manufacturing costs. The goals are low drag and cost while holding weight and structural performance at acceptable levels. The constraints and performance metrics are modelled by a linked series of analysis codes, the most expensive of which is a CFD analysis of the aerodynamics using an Euler code with coupled boundary layer model. Structural strength and weight are assessed using semi-empirical schemes based on typical airframe company practice. Costing is carried out using a newly developed generative approach based on a hierarchical decomposition of the key structural elements of a typical machined and bolted wing-box assembly. To carry out the DSO process in the face of multiple competing goals, a recently developed multi-objective probability of improvement formulation is invoked along with stochastic process response surface models (Krigs). This approach both mitigates the significant run times involved in CFD computation and also provides an elegant way of balancing competing goals while still allowing the deployment of the whole range of single objective optimizers commonly available to design teams.

Author(s):  
Ritu Garg

The computational grid provides the global computing infrastructure for users to access the services over a network. However, grid service providers charge users for the services based on their usage and QoS level specified. Therefore, in order to optimize the grid workflow execution, a robust multi-objective scheduling algorithm is needed considering economic cost along with execution performance. Generally, in multi-objective problems, simulations rely on running large number of evaluations to obtain the accurate results. However, algorithms that consider the preferences of decision maker, convergence to optimal tradeoff solutions is faster. Thus, in this chapter, the author proposed the preference-based guided search mechanism into MOEAs. To obtain solutions near the pre-specified regions of interest, the author has considered two MOEAs, namely R-NSGA-II and R-ε-MOEA. Further, to improve the diversity of solutions, a modified form called M-R-NSGA-II is used. Finally, the experimental settings and performance metrics are presented for the evaluation of the algorithms.


Human Affairs ◽  
2020 ◽  
Vol 30 (3) ◽  
pp. 328-342
Author(s):  
László Bernáth ◽  
János Tőzsér

AbstractOur paper consists of four parts. In the first part, we describe the challenge of the pervasive and permanent philosophical disagreement over philosophers’ epistemic self-esteem. In the second part, we investigate the attitude of philosophers who have high epistemic self-esteem even in the face of philosophical disagreement and who believe they have well-grounded philosophical knowledge. In the third section, we focus on the attitude of philosophers who maintain a moderate level of epistemic self-esteem because they do not attribute substantive philosophical knowledge to themselves but still believe that they have epistemic right to defend substantive philosophical beliefs. In the fourth section, we analyse the attitude of philosophers who have a low level of epistemic self-esteem in relation to substantive philosophical beliefs and make no attempt to defend those beliefs. We argue that when faced with philosophical disagreement philosophers either have to deny that the dissenting philosophers are their epistemic peers or have to admit that doing philosophy is less meaningful than it seemed before. In this second case, philosophical activity and performance should not contribute to the philosophers’ overall epistemic self-esteem to any significant extent.


Nature Energy ◽  
2021 ◽  
Author(s):  
Yanxin Yao ◽  
Jiafeng Lei ◽  
Yang Shi ◽  
Fei Ai ◽  
Yi-Chun Lu

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 117795-117812
Author(s):  
Nima Khodadadi ◽  
Mahdi Azizi ◽  
Siamak Talatahari ◽  
Pooya Sareh

Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 543
Author(s):  
Alejandra Ríos ◽  
Eusebio E. Hernández ◽  
S. Ivvan Valdez

This paper introduces a two-stage method based on bio-inspired algorithms for the design optimization of a class of general Stewart platforms. The first stage performs a mono-objective optimization in order to reach, with sufficient dexterity, a regular target workspace while minimizing the elements’ lengths. For this optimization problem, we compare three bio-inspired algorithms: the Genetic Algorithm (GA), the Particle Swarm Optimization (PSO), and the Boltzman Univariate Marginal Distribution Algorithm (BUMDA). The second stage looks for the most suitable gains of a Proportional Integral Derivative (PID) control via the minimization of two conflicting objectives: one based on energy consumption and the tracking error of a target trajectory. To this effect, we compare two multi-objective algorithms: the Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D) and Non-dominated Sorting Genetic Algorithm-III (NSGA-III). The main contributions lie in the optimization model, the proposal of a two-stage optimization method, and the findings of the performance of different bio-inspired algorithms for each stage. Furthermore, we show optimized designs delivered by the proposed method and provide directions for the best-performing algorithms through performance metrics and statistical hypothesis tests.


Sign in / Sign up

Export Citation Format

Share Document