Drag reduction by riblets

Author(s):  
Ricardo García-Mayoral ◽  
Javier Jiménez

The interaction of the overlying turbulent flow with riblets, and its impact on their drag reduction properties are analysed. In the so-called viscous regime of vanishing riblet spacing, the drag reduction is proportional to the riblet size, but for larger riblets the proportionality breaks down, and the drag reduction eventually becomes an increase. It is found that the groove cross section A + g is a better characterization of this breakdown than the riblet spacing, with an optimum . It is also found that the breakdown is not associated with the lodging of quasi-streamwise vortices inside the riblet grooves, or with the inapplicability of the Stokes hypothesis to the flow along the grooves, but with the appearance of quasi-two-dimensional spanwise vortices below y + ≈30, with typical streamwise wavelengths . They are connected with a Kelvin–Helmholtz-like instability of the mean velocity profile, also found in flows over plant canopies and other surfaces with transpiration. A simplified stability model for the ribbed surface approximately accounts for the scaling of the viscous breakdown with  A + g .

2011 ◽  
Vol 678 ◽  
pp. 317-347 ◽  
Author(s):  
RICARDO GARCÍA-MAYORAL ◽  
JAVIER JIMÉNEZ

The interaction of the overlying turbulent flow with a riblet surface and its impact on drag reduction are analysed. The ‘viscous regime’ of vanishing riblet spacing, in which the drag reduction produced by the riblets is proportional to their size, is reasonably well understood, but this paper focuses on the behaviour for spacingss+≃ 10–20, expressed in wall units, where the viscous regime breaks down and the reduction eventually becomes an increase. Experimental evidence suggests that the two regimes are largely independent, and, based on a re-evaluation of existing data, it is shown that the optimal rib size is collapsed best by the square root of the groove cross-section, ℓg+=Ag+1/2. The mechanism of the breakdown is investigated by systematic DNSs with increasing riblet sizes. It is found that the breakdown is caused by the appearance of long spanwise rollers belowy+≈ 20, with typical streamwise wavelengths λx+≈ 150, that develop from a two-dimensional Kelvin–Helmholtz-like instability of the mean streamwise flow, similar to those over plant canopies and porous surfaces. They account for the drag breakdown, both qualitatively and quantitatively. It is shown that a simplified linear instability model explains the scaling of the breakdown spacing with ℓg+.


1982 ◽  
Vol 119 ◽  
pp. 423-441 ◽  
Author(s):  
M. A. Goldshtik ◽  
V. V. Zametalin ◽  
V. N. Shtern

We propose a simplified theory of a viscous layer in near-wall turbulent flow that determines the mean-velocity profile and integral characteristics of velocity fluctuations. The theory is based on the concepts resulting from the experimental data implying a relatively simple almost-ordered structure of fluctuations in close proximity to the wall. On the basis of data on the greatest contribution to transfer processes made by the part of the spectrum associated with the main size of the observed structures, the turbulent fluctuations are simulated by a three-dimensional running wave whose parameters are found from the problem solution. Mathematically the problem reduces to the solution of linearized Navier-Stokes equations. The no-slip condition is satisfied on the wall, whereas on the outer boundary of a viscous layer the conditions of smooth conjunction with the asymptotic shape of velocity and fluctuation-energy profiles resulting from the dimensional analysis are satisfied. The formulation of the problem is completed by the requirement of maximum curvature of the mean-velocity profile on the outer boundary applied from stability considerations.The solution of the problem does not require any quantitative empirical data, although the conditions of conjunction were formulated according to the well-known concepts obtained experimentally. As a result, the near-wall law for the averaged velocity has been calculated theoretically and is in good agreement with experiment, and the characteristic scales for fluctuations have also been determined. The developed theory is applied to turbulent-flow calculations in Maxwell and Oldroyd media. The elastic properties of fluids are shown to lead to near-wall region reconstruction and its associated drag reduction, as is the case in turbulent flows of dilute polymer solutions. This theory accounts for several features typical of the Toms effect, such as the threshold character of the effect and the decrease in the normal fluctuating velocity. The analysis of the near-wall Oldroyd fluid flow permits us to elucidate several new aspects of the drag-reduction effect. It has been established that the Toms effect does not always result in thickening of the viscous sublayer; on the contrary, the most intense drag reduction takes place without thickening in the viscous sublayer.


2016 ◽  
Vol 801 ◽  
pp. 670-703 ◽  
Author(s):  
Hangjian Ling ◽  
Siddarth Srinivasan ◽  
Kevin Golovin ◽  
Gareth H. McKinley ◽  
Anish Tuteja ◽  
...  

Digital holographic microscopy is used for characterizing the profiles of mean velocity, viscous and Reynolds shear stresses, as well as turbulence level in the inner part of turbulent boundary layers over several super-hydrophobic surfaces (SHSs) with varying roughness/texture characteristics. The friction Reynolds numbers vary from 693 to 4496, and the normalized root mean square values of roughness $(k_{rms}^{+})$ vary from 0.43 to 3.28. The wall shear stress is estimated from the sum of the viscous and Reynolds shear stress at the top of roughness elements and the slip velocity is obtained from the mean profile at the same elevation. For flow over SHSs with $k_{rms}^{+}<1$, drag reduction and an upward shift of the mean velocity profile occur, along with a mild increase in turbulence in the inner part of the boundary layer. As the roughness increases above $k_{rms}^{+}\sim 1$, the flow over the SHSs transitions from drag reduction, where the viscous stress dominates, to drag increase where the Reynolds shear stress becomes the primary contributor. For the present maximum value of $k_{rms}^{+}=3.28$, the inner region exhibits the characteristics of a rough wall boundary layer, including elevated wall friction and turbulence as well as a downward shift in the mean velocity profile. Increasing the pressure in the test facility to a level that compresses the air layer on the SHSs and exposes the protruding roughness elements reduces the extent of drag reduction. Aligning the roughness elements in the streamwise direction increases the drag reduction. For SHSs where the roughness effect is not dominant ($k_{rms}^{+}<1$), the present measurements confirm previous theoretical predictions of the relationships between drag reduction and slip velocity, allowing for both spanwise and streamwise slip contributions.


1970 ◽  
Vol 37 (2) ◽  
pp. 488-493 ◽  
Author(s):  
P. S. Virk ◽  
H. S. Mickley ◽  
K. A. Smith

The maximum drag reduction in turbulent pipe flow of dilute polymer solutions is ultimately limited by a unique asymptote described by the experimental correlation: f−1/2=19.0log10(NRef1/2)−32.4 The semilogarithmic mean velocity profile corresponding to and inferred from this ultimate asymptote has a mixing-length constant of 0.085 and shares a trisection (at y+ ∼ 12) with the Newtonian viscous sublayer and law of the wall. Experimental mean velocity profiles taken during drag reduction lie in the region bounded by the inferred ultimate profile and the Newtonian law of the wall. At low drag reductions the experimental profiles are well correlated by an “effective slip” model but this fails progressively with increasing drag reduction. Based on the foregoing a three-zone scheme is proposed to model the mean flow structure during drag reduction. In this the mean velocity profile segments are (a) a viscous sublayer, akin to Newtonian, (b) an interactive zone, characteristic of drag reduction, in which the ultimate profile is followed, and (c) a turbulent core in which the Newtonian mixing-length constant applies. The proposed model is consistent with experimental observations and reduces satisfactorily to the Taylor-Prandtl scheme and the ultimate profile, respectively, at the limits of zero and maximum drag reductions.


Author(s):  
Hervé Bonnard ◽  
Ludovic Chatellier ◽  
Laurent David

An experimental study of vortex shedding on a hydrofoil Eppler 817 was conducted using two-dimensional two components Particle Image Velocimetry. This foil section’s characteristics are adapted for naval applications but sparsely documented. The characterization of the flow modes was realized based on statistical data such as the mean velocity field and the standard deviation of the vertical velocities. The data were acquired at very low Reynolds number which are not often covered for such hydrofoil and at four angles of attack ranging from 2◦ to 30◦. A map of different characteristic flow modes was made for this space of parameters and was used to identify flow configurations exhibiting particular dynamics.


1984 ◽  
Vol 106 (2) ◽  
pp. 187-192 ◽  
Author(s):  
J. W. Oler ◽  
V. W. Goldschmidt

The strongest indication of an ordered structure in the similarity region of plane jet flows is the well documented (but controversial) apparent “flapping” behavior. Previously, the negative correlation between probes placed on opposite sides of the jet centerline has been attributed to the periodic displacement of the mean velocity profile centerline about its average position, i.e., a flapping motion. The present investigation is directed at evaluating the premise of an essentially two-dimensional von Karman vortex street as being responsible for the apparent “flapping” behavior.


2007 ◽  
Vol 589 ◽  
pp. 479-507 ◽  
Author(s):  
E. KIT ◽  
I. WYGNANSKI ◽  
D. FRIEDMAN ◽  
O. KRIVONOSOVA ◽  
D. ZHILENKO

The flow in a turbulent mixing layer resulting from two parallel different velocity streams, that were brought together downstream of a jagged partition was investigated experimentally. The trailing edge of the partition had a short triangular ‘chevron’ shape that could also oscillate up and down at a prescribed frequency, because it was hinged to the stationary part of the partition to form a flap (fliperon). The results obtained from this excitation were compared to the traditional results obtained by oscillating a two-dimensional fliperon. Detailed measurements of the mean flow and the coherent structures, in the periodically excited and spatially developing mixing layer, and its random constituents were carried out using hot-wire anemometry and stereo particle image velocimetry.The prescribed spanwise wavelength of the chevron trailing edge generated coherent streamwise vortices while the periodic oscillation of this fliperon locked in-phase the large spanwise Kelvin–Helmholtz (K-H) rolls, therefore enabling the study of the inter- action between the two. The two-dimensional periodic excitation increases the strength of the spanwise rolls by increasing their size and their circulation, which depends on the input amplitude and frequency. The streamwise vortices generated by the jagged trailing edge distort and bend the primary K-H rolls. The present investigation endeavours to study the distortions of each mode as a consequence of their mutual interaction. Even the mean flow provides evidence for the local bulging of the large spanwise rolls because the integral width (the momentum thickness, θ), undulates along the span. The lateral location of the centre of the ensuing mixing layer (the location where the mean velocity is the arithmetic average of the two streams,y0), also suggests that these vortices are bent. Phase-locked and ensemble-averaged measurements provide more detailed information about the bending and bulging of the large eddies that ensue downstream of the oscillating chevron fliperon. The experiments were carried out at low speeds, but at sufficiently high Reynolds number to ensure naturally turbulent flow.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Rolf-Erik Keck ◽  
Dick Veldkamp ◽  
Helge Aagaard Madsen ◽  
Gunner Larsen

The work presented in this paper focuses on improving the description of wake evolution due to turbulent mixing in the dynamic wake meandering (DWM) model. From wake investigations performed with high-fidelity actuator line simulations carried out in ELLIPSYS3D, it is seen that the current DWM description, where the eddy viscosity is assumed to be constant in each cross-section of the wake, is insufficient. Instead, a two-dimensional eddy viscosity formulation is proposed to model the shear layer generated turbulence in the wake, based on the classical mixing length model. The performance of the modified DWM model is verified by comparing the mean wake velocity distribution with a set of ELLIPSYS3D actuator line calculations. The standard error (defined as the standard deviation of the difference between the mean velocity field of the DWM and the actuator line model), in the wake region extending from 3 to 12 diameters behind the rotor, is reduced by 27% by using the new eddy viscosity formulation.


Author(s):  
Riko Uekusa ◽  
Aika Kawagoe ◽  
Yusuke Nabae ◽  
Koji Fukagata

Abstract In the present study, we numerically manipulate the mean velocity profile of a turbulent channel flow and assess the friction drag reduction performance by using resolvent analysis. Building on the implication obtained from Kühnen et al. (Nat. Phys., Vol. 14, 2017, pp. 386–390) that modifying mean velocity profile flat leads to significant drag reduction, we first introduce two functions for turbulent mean velocity, which can express ‘flattened’ profiles: one is derived based on the turbulent viscosity model proposed by Reynolds & Tiederman (J. Fluid Mech., Vol. 658, 2010, pp. 336–382), and the other is based on the mean velocity profile of laminar flow. These functions are used as the mean velocity profile for the resolvent analysis, and the flatness of the resulting profiles is characterized by two different measures. As a result, we confirm that, friction drag reduction is achieved if the turbulent mean velocity profile is ‘flattened’. However, we also find that the flatness of the mean velocity profile in the center of the channel alone is not enough to evaluate the drag reduction performance.


Sign in / Sign up

Export Citation Format

Share Document