scholarly journals Placing our current ‘hyperthermal’ in the context of rapid climate change in our geological past

Author(s):  
Gavin L. Foster ◽  
Pincelli Hull ◽  
Daniel J. Lunt ◽  
James C. Zachos

‘…there are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we know we don't know. But there are also unknown unknowns. There are things we don't know we don't know.’ Donald Rumsfeld 12th February 2002. This article is part of a discussion meeting issue ‘Hyperthermals: rapid and extreme global warming in our geological past’.

2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2000 ◽  
Vol 97 (4) ◽  
pp. 1412-1417 ◽  
Author(s):  
D. L. Hartmann ◽  
J. M. Wallace ◽  
V. Limpasuvan ◽  
D. W. J. Thompson ◽  
J. R. Holton

2011 ◽  
Vol 79 (3-4) ◽  
pp. 157-162 ◽  
Author(s):  
Jonathan Holmes ◽  
John Lowe ◽  
Eric Wolff ◽  
Meric Srokosz

2007 ◽  
Vol 31 (5) ◽  
pp. 481-500 ◽  
Author(s):  
Tamsin L. Edwards ◽  
Michel Crucifix ◽  
Sandy P. Harrison

Climate sensitivity is defined as the change in global mean equilibrium temperature after a doubling of atmospheric CO2 concentration and provides a simple measure of global warming. An early estimate of climate sensitivity, 1.5—4.5°C, has changed little subsequently, including the latest assessment by the Intergovernmental Panel on Climate Change. The persistence of such large uncertainties in this simple measure casts doubt on our understanding of the mechanisms of climate change and our ability to predict the response of the climate system to future perturbations. This has motivated continued attempts to constrain the range with climate data, alone or in conjunction with models. The majority of studies use data from the instrumental period (post-1850), but recent work has made use of information about the large climate changes experienced in the geological past. In this review, we first outline approaches that estimate climate sensitivity using instrumental climate observations and then summarize attempts to use the record of climate change on geological timescales. We examine the limitations of these studies and suggest ways in which the power of the palaeoclimate record could be better used to reduce uncertainties in our predictions of climate sensitivity.


2020 ◽  
Author(s):  
Alistair Soutter ◽  
René Mõttus

Although the scientific evidence of anthropogenic climate change continues to grow, public discourse still reflects a high level of scepticism and political polarisation towards anthropogenic climate change. In this study (N = 499) we attempted to replicate and expand upon an earlier finding that environmental terminology (“climate change” versus “global warming”) could partly explain political polarisation in environmental scepticism (Schuldt, Konrath, & Schwarz, 2011). Participants completed a series of online questionnaires assessing personality traits, political preferences, belief in environmental phenomenon, and various pro-environmental attitudes and behaviours. Those with a Conservative political orientation and/or party voting believed less in both climate change and global warming compared to those with a Liberal orientation and/or party voting. Furthermore, there was an interaction between continuously measured political orientation, but not party voting, and question wording on beliefs in environmental phenomena. Personality traits did not confound these effects. Furthermore, continuously measured political orientation was associated with pro-environmental attitudes, after controlling for personality traits, age, gender, area lived in, income, and education. The personality domains of Openness, and Conscientiousness, were consistently associated with pro-environmental attitudes and behaviours, whereas Agreeableness was associated with pro-environmental attitudes but not with behaviours. This study highlights the importance of examining personality traits and political preferences together and suggests ways in which policy interventions can best be optimised to account for these individual differences.


2009 ◽  
Vol 160 (7) ◽  
pp. 195-200
Author(s):  
Reto Hefti

In the mountainous canton Grisons, much visited by tourists, the forest has always had an important role to play. New challenges are now presenting themselves. The article goes more closely into two themes on the Grisons forestry agenda dominating in the next few years: the increased use of timber and climate change. With the increased demand for logs and the new sawmill in Domat/Ems new opportunities are offered to the canton for more intensive use of the raw material, wood. This depends on a reduction in production costs and a positive attitude of the population towards the greater use of wood. A series of measures from the Grisons Forestry Department should be of help here. The risk of damage to infrastructure is particularly high in a mountainous canton. The cantonal government of the Grisons has commissioned the Forestry Department to define the situation concerning the possible consequences of global warming on natural hazards and to propose measures which may be taken. The setting up of extensive measurement and information systems, the elaboration of intervention maps, the estimation of the danger potential in exposed areas outside the building zone and the maintenance of existing protective constructions through the creation of a protective constructions register, all form part of the government programme for 2009 to 2012. In the Grisons, forest owners and visitors will have to become accustomed to the fact that their forests must again produce more wood and that, on account of global warming, protective forests will become even more important than they already are today.


Author(s):  
William R. Thompson ◽  
Leila Zakhirova

In this final chapter, we conclude by recapitulating our argument and evidence. One goal of this work has been to improve our understanding of the patterns underlying the evolution of world politics over the past one thousand years. How did we get to where we are now? Where and when did the “modern” world begin? How did we shift from a primarily agrarian economy to a primarily industrial one? How did these changes shape world politics? A related goal was to examine more closely the factors that led to the most serious attempts by states to break free of agrarian constraints. We developed an interactive model of the factors that we thought were most likely to be significant. Finally, a third goal was to examine the linkages between the systemic leadership that emerged from these historical processes and the global warming crisis of the twenty-first century. Climate change means that the traditional energy platforms for system leadership—coal, petroleum, and natural gas—have become counterproductive. The ultimate irony is that we thought that the harnessing of carbon fuels made us invulnerable to climate fluctuations, while the exact opposite turns out to be true. The more carbon fuels are consumed, the greater the damage done to the atmosphere. In many respects, the competition for systemic leadership generated this problem. Yet it is unclear whether systemic leadership will be up to the task of resolving it.


Sign in / Sign up

Export Citation Format

Share Document