scholarly journals A new method for detecting solar atmospheric gravity waves

Author(s):  
Daniele Calchetti ◽  
Stuart M. Jefferies ◽  
Bernhard Fleck ◽  
Francesco Berrilli ◽  
Dmitriy V. Shcherbik

Internal gravity waves have been observed in the Earth’s atmosphere and oceans, on Mars and Jupiter, and in the Sun’s atmosphere. Despite ample evidence for the existence of propagating gravity waves in the Sun’s atmosphere, we still do not have a full understanding of their characteristics and overall role for the dynamics and energetics of the solar atmosphere. Here, we present a new approach to study the propagation of gravity waves in the solar atmosphere. It is based on calculating the three-dimensional cross-correlation function between the vertical velocities measured at different heights. We apply this new method to a time series of co-spatial and co-temporal Doppler images obtained by SOHO/MDI and Hinode/SOT as well as to simulations of upward propagating gravity wave-packets. We show some preliminary results and outline future developments. This article is part of the Theo Murphy meeting issue ‘High-resolution wave dynamics in the lower solar atmosphere’.

Author(s):  
G. Vigeesh ◽  
M. Roth ◽  
O. Steiner ◽  
B. Fleck

The solar surface is a continuous source of internal gravity waves (IGWs). IGWs are believed to supply the bulk of the wave energy for the lower solar atmosphere, but their existence and role for the energy balance of the upper layers is still unclear, largely due to the lack of knowledge about the influence of the Sun’s magnetic fields on their propagation. In this work, we look at naturally excited IGWs in realistic models of the solar atmosphere and study the effect of different magnetic field topographies on their propagation. We carry out radiation-magnetohydrodynamic simulations of a magnetic field free and two magnetic models—one with an initial, homogeneous, vertical field of 100 G magnetic flux density and one with an initial horizontal field of 100 G flux density. The propagation properties of IGWs are studied by examining the phase-difference and coherence spectra in the k h  −  ω diagnostic diagram. We find that IGWs in the upper solar atmosphere show upward propagation in the model with predominantly horizontal field similar to the model without magnetic field. In contrast to that the model with predominantly vertical fields show downward propagation. This crucial difference in the propagation direction is also revealed in the difference in energy transported by waves for heights below 0.8 Mm. Higher up, the propagation properties show a peculiar behaviour, which require further study. Our analysis suggests that IGWs may play a significant role in the heating of the chromospheric layers of the internetwork region where horizontal fields are thought to be prevalent. This article is part of the Theo Murphy meeting issue ‘High-resolution wave dynamics in the lower solar atmosphere’.


2008 ◽  
Vol 681 (2) ◽  
pp. L125-L128 ◽  
Author(s):  
Thomas Straus ◽  
Bernhard Fleck ◽  
Stuart M. Jefferies ◽  
Gianna Cauzzi ◽  
Scott W. McIntosh ◽  
...  

2013 ◽  
Vol 43 (6) ◽  
pp. 1225-1239 ◽  
Author(s):  
Matthew H. Alford ◽  
Andrey Y. Shcherbina ◽  
Michael C. Gregg

Abstract Shipboard ADCP and towed CTD measurements are presented of a near-inertial internal gravity wave radiating away from a zonal jet associated with the Subtropical Front in the North Pacific. Three-dimensional spatial surveys indicate persistent alternating shear layers sloping downward and equatorward from the front. As a result, depth-integrated ageostrophic shear increases sharply equatorward of the front. The layers have a vertical wavelength of about 250 m and a slope consistent with a wave of frequency 1.01f. They extend at least 100 km south of the front. Time series confirm that the shear is associated with a downward-propagating near-inertial wave with frequency within 20% of f. A slab mixed layer model forced with shipboard and NCEP reanalysis winds suggests that wind forcing was too weak to generate the wave. Likewise, trapping of the near-inertial motions at the low-vorticity edge of the front can be ruled out because of the extension of the features well south of it. Instead, the authors suggest that the wave arises from an adjustment process of the frontal flow, which has a Rossby number about 0.2–0.3.


2005 ◽  
Vol 62 (1) ◽  
pp. 107-124 ◽  
Author(s):  
In-Sun Song ◽  
Hye-Yeong Chun

Abstract The phase-speed spectrum of momentum flux by convectively forced internal gravity waves is analytically formulated in two- and three-dimensional frameworks. For this, a three-layer atmosphere that has a constant vertical wind shear in the lowest layer, a uniform wind above, and piecewise constant buoyancy frequency in a forcing region and above is considered. The wave momentum flux at cloud top is determined by the spectral combination of a wave-filtering and resonance factor and diabatic forcing. The wave-filtering and resonance factor that is determined by the basic-state wind and stability and the vertical configuration of forcing restricts the effectiveness of the forcing, and thus only a part of the forcing spectrum can be used for generating gravity waves that propagate above cumulus clouds. The spectral distribution of the wave momentum flux is largely determined by the wave-filtering and resonance factor, but the magnitude of the momentum flux varies significantly according to spatial and time scales and moving speed of the forcing. The wave momentum flux formulation in the two-dimensional framework is extended to the three-dimensional framework. The three-dimensional momentum flux formulation is similar to the two-dimensional one except that the wave propagation in various horizontal directions and the three-dimensionality of forcing are allowed. The wave momentum flux spectrum formulated in this study is validated using mesoscale numerical model results and can reproduce the overall spectral structure and magnitude of the wave momentum flux spectra induced by numerically simulated mesoscale convective systems reasonably well.


2018 ◽  
Vol 615 ◽  
pp. A23 ◽  
Author(s):  
P. Auclair-Desrotour ◽  
S. Mathis ◽  
J. Laskar ◽  
J. Leconte

Context. Oceanic tides are a major source of tidal dissipation. They drive the evolution of planetary systems and the rotational dynamics of planets. However, two-dimensional (2D) models commonly used for the Earth cannot be applied to extrasolar telluric planets hosting potentially deep oceans because they ignore the three-dimensional (3D) effects related to the ocean’s vertical structure. Aims. Our goal is to investigate, in a consistant way, the importance of the contribution of internal gravity waves in the oceanic tidal response and to propose a modelling that allows one to treat a wide range of cases from shallow to deep oceans. Methods. A 3D ab initio model is developed to study the dynamics of a global planetary ocean. This model takes into account compressibility, stratification, and sphericity terms, which are usually ignored in 2D approaches. An analytic solution is computed and used to study the dependence of the tidal response on the tidal frequency and on the ocean depth and stratification. Results. In the 2D asymptotic limit, we recover the frequency-resonant behaviour due to surface inertial-gravity waves identified by early studies. As the ocean depth and Brunt–Väisälä frequency increase, the contribution of internal gravity waves grows in importance and the tidal response becomes 3D. In the case of deep oceans, the stable stratification induces resonances that can increase the tidal dissipation rate by several orders of magnitude. It is thus able to significantly affect the evolution time scale of the planetary rotation.


1969 ◽  
Vol 36 (4) ◽  
pp. 785-803 ◽  
Author(s):  
Francis P. Bretherton

A train of internal gravity waves in a stratified liquid exerts a stress on the liquid and induces changes in the mean motion of second order in the wave amplitude. In those circumstances in which the concept of a slowly varying quasi-sinusoidal wave train is consistent, the mean velocity is almost horizontal and is determined to a first approximation irrespective of the vertical forces exerted by the waves. The sum of the mean flow kinetic energy and the wave energy is then conserved. The circulation around a horizontal circuit moving with the mean velocity is increased in the presence of waves according to a simple formula. The flow pattern is obtained around two- and three-dimensional wave packets propagating into a liquid at rest and the results are generalized for any basic state of motion in which the internal Froude number is small. Momentum can be associated with a wave packet equal to the horizontal wave-number times the wave energy divided by the intrinsic frequency.


Sign in / Sign up

Export Citation Format

Share Document