scholarly journals Observations of Near-Inertial Internal Gravity Waves Radiating from a Frontal Jet

2013 ◽  
Vol 43 (6) ◽  
pp. 1225-1239 ◽  
Author(s):  
Matthew H. Alford ◽  
Andrey Y. Shcherbina ◽  
Michael C. Gregg

Abstract Shipboard ADCP and towed CTD measurements are presented of a near-inertial internal gravity wave radiating away from a zonal jet associated with the Subtropical Front in the North Pacific. Three-dimensional spatial surveys indicate persistent alternating shear layers sloping downward and equatorward from the front. As a result, depth-integrated ageostrophic shear increases sharply equatorward of the front. The layers have a vertical wavelength of about 250 m and a slope consistent with a wave of frequency 1.01f. They extend at least 100 km south of the front. Time series confirm that the shear is associated with a downward-propagating near-inertial wave with frequency within 20% of f. A slab mixed layer model forced with shipboard and NCEP reanalysis winds suggests that wind forcing was too weak to generate the wave. Likewise, trapping of the near-inertial motions at the low-vorticity edge of the front can be ruled out because of the extension of the features well south of it. Instead, the authors suggest that the wave arises from an adjustment process of the frontal flow, which has a Rossby number about 0.2–0.3.

2002 ◽  
Vol 458 ◽  
pp. 75-101 ◽  
Author(s):  
ÁLVARO VIÚDEZ ◽  
DAVID G. DRITSCHEL

This paper discusses a potential-vorticity-conserving approach to modelling nonlinear internal gravity waves in a rotating Boussinesq fluid. The focus of the work is on the pseudo-plane motion (motion in the x, z-plane), for which we present a broad range of numerical results. In this case there are two material coordinates, the density and the y-component of the velocity in the inertial frame of reference, which are related to the x and z displacements of fluid particles relative to a reference configuration. The amount of potential vorticity within a fluid region bounded by isosurfaces of these material coordinates is proportional to the area within this region, and is therefore conserved as well. Two new potentials, defined in terms of the displacements and combining the vorticity and density fields, are introduced as new dependent variables. These potentials entirely govern the dynamics of internal gravity waves for the linearized system when the basic state has uniform potential vorticity. The final system of equations consists of three prognostic equations (for the potential vorticity and the Laplacians of the two potentials) and one diagnostic equation, of Monge–Ampère type, for a third potential. This diagnostic equation arises from the nonlinear definition of potential vorticity. The ellipticity of the Monge–Ampère equation implies both inertial and static stability. In three dimensions, the three potentials form a vector, whose (three-dimensional) Laplacian is equal to the vorticity plus the gradient of the perturbation density.Numerical simulations are carried out using a novel algorithm which directly evolves the potential vorticity, in a Lagrangian manner (following fluid particles), without diffusion. We present results which emphasize the way in which potential vorticity anomalies modify the characteristics of internal gravity waves, e.g. the propagation of internal wave packets, including reflection, refraction, and amplification. We also show how potential vorticity anomalies may generate internal gravity waves, along with the subsequent ‘geostrophic adjustment’ of the flow to a ‘balanced’ wave-less state. These examples, and the straightforward extension of the theoretical and numerical approach to three dimensions, point to a direct and accurate means to elucidate the role of potential vorticity in internal gravity wave interactions. As such, this approach may help a better understanding of the observed characteristics of internal gravity waves in the oceans.


2018 ◽  
Vol 841 ◽  
pp. 614-635 ◽  
Author(s):  
F. Beckebanze ◽  
C. Brouzet ◽  
I. N. Sibgatullin ◽  
L. R. M. Maas

The reflection of internal gravity waves at sloping boundaries leads to focusing or defocusing. In closed domains, focusing typically dominates and projects the wave energy onto ‘wave attractors’. For small-amplitude internal waves, the projection of energy onto higher wavenumbers by geometric focusing can be balanced by viscous dissipation at high wavenumbers. Contrary to what was previously suggested, viscous dissipation in interior shear layers may not be sufficient to explain the experiments on wave attractors in the classical quasi-two-dimensional trapezoidal laboratory set-ups. Applying standard boundary layer theory, we provide an elaborate description of the viscous dissipation in the interior shear layer, as well as at the rigid boundaries. Our analysis shows that even if the thin lateral Stokes boundary layers consist of no more than 1 % of the wall-to-wall distance, dissipation by lateral walls dominates at intermediate wave numbers. Our extended model for the spectrum of three-dimensional wave attractors in equilibrium closes the gap between observations and theory by Hazewinkel et al. (J. Fluid Mech., vol. 598, 2008, pp. 373–382).


2013 ◽  
Vol 739 ◽  
pp. 229-253 ◽  
Author(s):  
Andrea Maffioli ◽  
P. A. Davidson ◽  
S. B. Dalziel ◽  
N. Swaminathan

AbstractLocalized regions of turbulence, or turbulent clouds, in a stratified fluid are the subject of this study, which focuses on the edge dynamics occurring between the turbulence and the surrounding quiescent region. Through laboratory experiments and numerical simulations of stratified turbulent clouds, we confirm that the edge dynamics can be subdivided into materially driven intrusions and horizontally travelling internal wave-packets. Three-dimensional visualizations show that the internal gravity wave-packets are in fact large-scale pancake structures that grow out of the turbulent cloud into the adjacent quiescent region. The wave-packets were tracked in time, and it is found that their speed obeys the group speed relation for linear internal gravity waves. The energetics of the propagating waves, which include waveforms that are inclined with respect to the horizontal, are also considered and it is found that, after a period of two eddy turnover times, the internal gravity waves carry up to 16 % of the cloud kinetic energy into the initially quiescent region. Turbulent events in nature are often in the form of decaying turbulent clouds, and it is therefore suggested that internal gravity waves radiated from an initial cloud could play a significant role in the reorganization of energy and momentum in the atmosphere and oceans.


2015 ◽  
Vol 28 (12) ◽  
pp. 4941-4949 ◽  
Author(s):  
Tae-Won Park ◽  
Yi Deng ◽  
Wenhong Li ◽  
Song Yang ◽  
Ming Cai

Abstract The mass footprints associated with atmospheric blocks over the North Pacific are evaluated by constructing daily tendencies of total mass over the blocking domain from three-dimensional mass fluxes throughout the life cycle of a composite blocking event. The results highlight the major role of mass convergence driven by low-frequency (with periods >1 week) atmospheric disturbances during both the development and decay stage of a block. Specifically, low-frequency eddies are responsible for the accelerated mass buildup 4 days prior to the peak intensity of a block, and they also account for the rapid mass loss afterward. High-frequency, subweekly scale disturbances have statistically significant positive contributions to the mass loss during the decay stage, and also show weak negative contributions to the development of the blocking high prior to the peak of the high. The majority of the mass convergence (divergence) responsible for the intensification (decay) of the blocking high occurs in the middle-to-lower troposphere and is largely attributed to mass flux driven by low-frequency meridional (zonal) winds. Also discussed are the implications of this new mass perspective of atmospheric blocks for understanding dynamics of blocking highs and for model bias detection and attribution.


Author(s):  
YU ZHANG ◽  
YU PING GUAN ◽  
RUI XIN HUANG

AbstractOcean striations are composed of alternating quasi-zonal band-like flows; this kind of organized structure of currents be found in all world’s oceans and seas. Previous studies have mainly been focused on the mechanisms of their generation and propagation. This study uses the spatial high-pass filtering to obtain the three-dimensional structure of ocean striations in the North Pacific in both the z-coordinate and σ-coordinate based on 10-yr averaged SODA3 data. First, we identify an ideal-fluid potential density domain where the striations are undisturbed by the surface forcing and boundary effects. Second, using the isopycnal layer analysis, we show that on isopycnal surfaces the orientations of striations nearly follow the potential vorticity (PV) contours, while in the meridional-vertical plane the central positions of striations are generally aligned with the latitude of zero gradient of the relative PV. Our analysis provides a simple dynamical interpretation and better understanding for the role of ocean striations.


1993 ◽  
Vol 247 ◽  
pp. 205-229
Author(s):  
Hong Ma

The effect of a geostrophic boundary current on internal gravity waves is studied with a reduced-gravity model. We found that the boundary current not only modifies the coastal Kelvin wave, but also forms wave guides for short internal gravity waves. The combined effects of current shear, the boundary, and the slope of the interface create the trapping mechanism. These trapped internal gravity waves appear as groups of discrete zonal modes. They have wavelengths comparable to or shorter than the internal Rossby radius of deformation. Their phase speeds are close to that of the internal Kelvin wave. However, they can propagate both in, or opposite to, the direction of the Kelvin wave. The results of the present work suggest the possibility of finding an energetic internal gravity wave phenomenon with near-inertial frequency in a broad geostrophic boundary current.


2020 ◽  
Vol 50 (9) ◽  
pp. 2713-2733
Author(s):  
Yulin Pan ◽  
Brian K. Arbic ◽  
Arin D. Nelson ◽  
Dimitris Menemenlis ◽  
W. R. Peltier ◽  
...  

AbstractWe consider the power-law spectra of internal gravity waves in a rotating and stratified ocean. Field measurements have shown considerable variability of spectral slopes compared to the high-wavenumber, high-frequency portion of the Garrett–Munk (GM) spectrum. Theoretical explanations have been developed through wave turbulence theory (WTT), where different power-law solutions of the kinetic equation can be found depending on the mechanisms underlying the nonlinear interactions. Mathematically, these are reflected by the convergence properties of the so-called collision integral (CL) at low- and high-frequency limits. In this work, we study the mechanisms in the formation of the power-law spectra of internal gravity waves, utilizing numerical data from the high-resolution modeling of internal waves (HRMIW) in a region northwest of Hawaii. The model captures the power-law spectra in broad ranges of space and time scales, with scalings ω−2.05±0.2 in frequency and m−2.58±0.4 in vertical wavenumber. The latter clearly deviates from the GM76 spectrum but is closer to a family of induced-diffusion-dominated solutions predicted by WTT. Our analysis of nonlinear interactions is performed directly on these model outputs, which is fundamentally different from previous work assuming a GM76 spectrum. By applying a bicoherence analysis and evaluations of modal energy transfer, we show that the CL is dominated by nonlocal interactions between modes in the power-law range and low-frequency inertial motions. We further identify induced diffusion and the near-resonances at its spectral vicinity as dominating the formation of power-law spectrum.


Author(s):  
Yu-Hsien Lin ◽  
Ming-Chung Fang

In this paper, the authors proposed a ship weather-routing algorithm based on the composite influence of dynamic forces, i.e. wind, wave and current forces, for determining the optimized transoceanic voyages. Our developed routing algorithm, three-dimensional modified isochrones (3DMI) method, utilizes the recursive forward technique and floating grid system for both the east- and west-bound ship routes in the North Pacific Ocean. In order to achieve the goals of minimized fuel-consumption or the maximized-safety routes for the transoceanic voyages, two sailing methods are applied as the prerequisite routes in the earth coordinate systems. The illustrative analysis of ship routes has been presented and discussed based on the realistic constraints, such as the presence of land boundaries, non-navigable sea, external forces, parametric roll responses as well as ship speed loss. As a result, the proposed calculation is verified to be effective for the optimized sailings by adjusting the weighting parameters in the objective functions.


Sign in / Sign up

Export Citation Format

Share Document