scholarly journals Controlling the adhesive pull-off force via the change of contact geometry

Author(s):  
I. I. Argatov

A first-order asymptotic analysis of the Griffith energy balance in the Johnson–Kendall–Roberts model of adhesive contact under non-symmetric perturbation of the contact geometry is presented. The pull-off force is evaluated in explicit form. A particular case of adhesive contact between a relatively stiff sphere and an elastic half-space is considered under the assumption that the sphere geometry is changed by the application of an arbitrary lateral normal surface loading. The effect of the sphere Poisson’s ratio on controlling the adhesive pull-off force is considered. This article is part of a discussion meeting issue ‘A cracking approach to inventing new tough materials: fracture stranger than friction’.

2016 ◽  
Vol 807 ◽  
pp. 87-134 ◽  
Author(s):  
Mark Short ◽  
James J. Quirk ◽  
Chad D. Meyer ◽  
Carlos Chiquete

We study the physics of steady detonation wave propagation in a two-dimensional circular arc via a Detonation Shock Dynamics (DSD) surface evolution model. The dependence of the surface angular speed and surface spatial structure on the inner arc radius ($R_{i}$), the arc thickness ($R_{e}-R_{i}$, where $R_{e}$ is the outer arc radius) and the degree of confinement on the inner and outer arc is examined. We first analyse the results for a linear $D_{n}$–$\unicode[STIX]{x1D705}$ model, in which the normal surface velocity $D_{n}=D_{CJ}(1-B\unicode[STIX]{x1D705})$, where $D_{CJ}$ is the planar Chapman–Jouguet velocity, $\unicode[STIX]{x1D705}$ is the total surface curvature and $B$ is a length scale representative of a reaction zone thickness. An asymptotic analysis assuming the ratio $B/R_{i}\ll 1$ is conducted for this model and reveals a complex surface structure as a function of the radial variation from the inner to the outer arc. For sufficiently thin arcs, where $(R_{e}-R_{i})/R_{i}=O(B/R_{i})$, the angular speed of the surface depends on the inner arc radius, the arc thickness and the inner and outer arc confinement. For thicker arcs, where $(R_{e}-R_{i})/R_{i}=O(1)$, the angular speed does not depend on the outer arc radius or the outer arc confinement to the order calculated. It is found that the leading-order angular speed depends only on $D_{CJ}$ and $R_{i}$, and corresponds to a Huygens limit (zero curvature) propagation model where $D_{n}=D_{CJ}$, assuming a constant angular speed and perfect confinement on the inner arc surface. Having the normal surface speed depend on curvature requires the insertion of a boundary layer structure near the inner arc surface. This is driven by an increase in the magnitude of the surface wave curvature as the inner arc surface is approached that is needed to meet the confinement condition on the inner arc surface. For weak inner arc confinement, the surface wave spatial variation with the radial coordinate is described by a triple-deck structure. The first-order correction to the angular speed brings in a dependence on the surface curvature through the parameter $B$, while the influence of the inner arc confinement on the angular velocity only appears in the second-order correction. For stronger inner arc confinement, the surface wave structure is described by a two-layer solution, where the effect of the confinement on the angular speed is promoted to the first-order correction. We also compare the steady-state arc solution for a PBX 9502 DSD model to an experimental two-dimensional arc geometry validation test.


2013 ◽  
Vol 80 (6) ◽  
Author(s):  
Fan Jin ◽  
Xu Guo ◽  
Wei Zhang

In the present paper, axisymmetric frictionless adhesive contact between a rigid punch and a power-law graded elastic half-space is analytically investigated with use of Betti's reciprocity theorem and the generalized Abel transformation, a set of general closed-form solutions are derived to the Hertzian contact and Johnson–Kendall–Roberts (JKR)-type adhesive contact problems for an arbitrary punch profile within a circular contact region. These solutions provide analytical expressions of the surface stress, deformation fields, and equilibrium relations among the applied load, indentation depth, and contact radius. Based on these results, we then examine the combined effects of material inhomogeneities and punch surface morphologies on the adhesion behaviors of the considered contact system. The analytical results obtained in this paper include the corresponding solutions for homogeneous isotropic materials and the Gibson soil as special cases and, therefore, can also serve as the benchmarks for checking the validity of the numerical solution methods.


2018 ◽  
Vol 5 (5) ◽  
pp. 180203 ◽  
Author(s):  
Adam G. Taylor ◽  
Jae H. Chung

New solutions of potential functions for the bilinear vertical traction boundary condition are derived and presented. The discretization and interpolation of higher-order tractions and the superposition of the bilinear solutions provide a method of forming approximate and continuous solutions for the equilibrium state of a homogeneous and isotropic elastic half-space subjected to arbitrary normal surface tractions. Past experimental measurements of contact pressure distributions in granular media are reviewed in conjunction with the application of the proposed solution method to analysis of elastic settlement in shallow foundations. A numerical example is presented for an empirical ‘saddle-shaped’ traction distribution at the contact interface between a rigid square footing and a supporting soil medium. Non-dimensional soil resistance is computed as the reciprocal of normalized surface displacements under this empirical traction boundary condition, and the resulting internal stresses are compared to classical solutions to uniform traction boundary conditions.


2011 ◽  
Vol 368-373 ◽  
pp. 2679-2682
Author(s):  
Xu Guang Kong ◽  
Jun Qing Liu

This paper analyzed the board of reliability on the elastic half space model. Considered the random of the larger variability parameters, such as foundation, board, load, the paper studied the reliability of this issue application of first order second moment method. This paper analyzed the influence of the random parameter variability on the reliability index β and failure probability, obtained some useful conclusions and had some engineering referencing.


1996 ◽  
Vol 63 (2) ◽  
pp. 245-251 ◽  
Author(s):  
J. R. Barber

Closed-form expressions are obtained for the normal surface displacements due to a normal point force moving at constant speed over the surface of an elastic half-space. The Smirnov-Sobolev technique is used to reduce the problem to a linear superposition of two-dimensional stress and displacement fields.


2021 ◽  
Author(s):  
Axel Kleidon ◽  
Maik Renner ◽  
Annu Panwar ◽  
Sarosh Alam Ghausi

<p>Land-atmosphere interactions are typically evaluated using numerical simulation models of increasingly greater complexity.  But what are the key, major constraints that determine the first-order controls of the land-atmosphere system?  Here, we present an alternative approach that is solely based on energetic and thermodynamic constraints of the coupled land-atmosphere system and show that this approach can reproduce observations at the diurnal scale very well.  The key concept we use is that turbulent heat fluxes are predominantly the result of an atmospheric heat engine that is driven by the heat input from the surface and that operates at the thermodynamic limit of maximum power.  This provides a closure for the magnitude of turbulent fluxes in the surface energy balance.  Interactions enter this approach mainly in two ways: First, the cooling effect of turbulent heat fluxes on surface temperature lowers the engine's efficiency, thereby setting the maximum power limit, and second, by heat storage changes in the lower atmosphere, which represent an entropy term inside the heat engine and alter the thermodynamic limit for power output.  Both effects are, however, well constrained by energy balances, yielding analytical solutions for energy balance partitioning during the day without the need for empirical parameters. The further partitioning into sensible and latent heat fluxes is obtained from the assumption of thermodynamic equilibrium at the surface where heat and moisture is added to the atmosphere (if sufficient soil water is accessible).  We then show that this approach works remarkably well in reproducing FluxNet observations over the diurnal cycle.  What this implies is that these physical constraints determine the first-order dynamics of the land-atmosphere system, enabling us to derive simple, physics-based estimates of climate, the dominant effects of vegetation, and the response of the coupled system to global climate change.</p>


Sign in / Sign up

Export Citation Format

Share Document