scholarly journals Memory, consciousness and neuroimaging

1998 ◽  
Vol 353 (1377) ◽  
pp. 1861-1878 ◽  
Author(s):  
◽  
D. L. Schacter ◽  
R. L. Buckner ◽  
W. Koutstaal

Neuroimaging techniques that allow the assessment of memory performance in healthy human volunteers while simultaneously obtaining measurements of brain activity in vivo may offer new information on the neural correlates of particular forms of memory retrieval and their association with consciousness and intention. We consider evidence from studies with positron emission tomography and functional magnetic resonance imaging indicating that priming, a form of implicit retrieval, is associated with decreased activity in various cortical regions. We also consider evidence concerning the question of whether two components of explicit retrieval—intentional or effortful search and successful conscious recollection— are preferentially associated with increased activity in prefrontal and medial temporal regions, respectively. Last, we consider recent efforts to probe the relation between the phenomenological character of remembering and neural activity. In this instance we broaden our scope to include studies employing event–related potentials and consider evidence concerning the neural correlates of qualitatively different forms of memory, including memory that is specifically associated with a sense of self, and the recollection of particular temporal or perceptual features that might contribute to a rich and vivid experience of the past.

2011 ◽  
Vol 23 (6) ◽  
pp. 1405-1418 ◽  
Author(s):  
Giulia Galli ◽  
Leun J. Otten

It is unclear how neural correlates of episodic memory retrieval differ depending on the type of material that is retrieved. Here, we used a source memory task to compare electrical brain activity for the recollection of three types of stimulus material. At study, healthy adults judged how well visually presented objects, words, and faces fitted with paired auditorily presented names of locations. At test, only visual stimuli were presented. The task was to decide whether an item had been presented earlier and, if so, what location had been paired with the item. Stimulus types were intermixed across trials in Experiment 1 and presented in separate study–test lists in Experiment 2. A graded pattern of memory performance was observed across objects, words, and faces in both experiments. Between 300 and 500 msec, event-related potentials for recollected objects and faces showed a more frontal scalp distribution compared to words in both experiments. Later in the recording epoch, all three stimulus materials elicited recollection effects over left posterior scalp sites. However, these effects extended more anteriorly for objects and faces when stimulus categories were blocked. These findings demonstrate that the neural correlates of recollection are material specific, the crucial difference being between pictorial and verbal material. Faces do not appear to have a special status. The sensitivity of recollection effects to the kind of experimental design suggests that, in addition to type of stimulus material, higher-level control processes affect the cognitive and neural mechanisms underlying episodic retrieval.


1997 ◽  
Vol 8 (3) ◽  
pp. 250-257 ◽  
Author(s):  
Marcia K. Johnson ◽  
Scott F. Nolde ◽  
Mara Mather ◽  
John Kounios ◽  
Daniel L. Schacter ◽  
...  

Event-related potentials (ERPs) were compared for correct recognitions of previously presented words and false recognitions of associatively related, nonpresented words (lures) When the test items were presented blocked by test type (old, new, lure), waveforms for old and lure items were different, especially at frontal and left parietal electrode sites, consistent with previous positron emission tomography (PET) data (Schacter, Reiman, et al, 1996) When the test format randomly intermixed the types of items, waveforms for old and lure items were more similar We suggest that test format affects the type of processing subjects engage in, consistent with expectations from the source-monitoring framework (Johnson, Hashtroudi, & Lindsay, 1993) These results also indicate that brain activity as assessed by neuroimaging designs requiring blocked presentation of trials (e.g., PET) do not necessarily reflect the brain activity that occurs in cognitive-behavioral paradigms, in which types of test trials are typically intermixed


2006 ◽  
Vol 18 (1) ◽  
pp. 33-47 ◽  
Author(s):  
Audrey Duarte ◽  
Charan Ranganath ◽  
Celina Trujillo ◽  
Robert T. Knight

Numerous behavioral studies have suggested that normal aging has deleterious effects on episodic memory and that recollection is disproportionately impaired relative to familiarity-based recognition. However, there is a wide degree of variability in memory performance within the aging population and this generalization may not apply to all elderly adults. Here we investigated these issues by using event-related potentials (ERPs) to measure the effects of aging on the neural correlates of recollection and familiarity in older adults with recognition memory performance that was equivalent to (old-high) or lower than (old-low) that of young adults. Results showed that, behaviorally, old-high subjects exhibited intact recollection but reduced familiarity, whereas old-low subjects had impairments in both recollection and familiarity, relative to the young. Consistent with behavioral results, old-high subjects exhibited ERP correlates of recollection that were topographically similar to those observed in young subjects. However, unlike the young adults, old-high subjects did not demonstrate any neural correlates of familiarity-based recognition. In contrast to the old-high group, the old-low group exhibited neural correlates of recollection that were topographically distinct from those of the young. Our results suggest that the effects of aging on the underlying brain processes related to recollection and familiarity are dependent on individual memory performance and highlight the importance of examining performance variability in normal aging.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saugat Bhattacharyya ◽  
Davide Valeriani ◽  
Caterina Cinel ◽  
Luca Citi ◽  
Riccardo Poli

AbstractIn this paper we present, and test in two realistic environments, collaborative Brain-Computer Interfaces (cBCIs) that can significantly increase both the speed and the accuracy of perceptual group decision-making. The key distinguishing features of this work are: (1) our cBCIs combine behavioural, physiological and neural data in such a way as to be able to provide a group decision at any time after the quickest team member casts their vote, but the quality of a cBCI-assisted decision improves monotonically the longer the group decision can wait; (2) we apply our cBCIs to two realistic scenarios of military relevance (patrolling a dark corridor and manning an outpost at night where users need to identify any unidentified characters that appear) in which decisions are based on information conveyed through video feeds; and (3) our cBCIs exploit Event-Related Potentials (ERPs) elicited in brain activity by the appearance of potential threats but, uniquely, the appearance time is estimated automatically by the system (rather than being unrealistically provided to it). As a result of these elements, in the two test environments, groups assisted by our cBCIs make both more accurate and faster decisions than when individual decisions are integrated in more traditional manners.


1991 ◽  
Vol 3 (2) ◽  
pp. 151-165 ◽  
Author(s):  
Helen Neville ◽  
Janet L. Nicol ◽  
Andrew Barss ◽  
Kenneth I. Forster ◽  
Merrill F. Garrett

Theoretical considerations and diverse empirical data from clinical, psycholinguistic, and developmental studies suggest that language comprehension processes are decomposable into separate subsystems, including distinct systems for semantic and grammatical processing. Here we report that event-related potentials (ERPs) to syntactically well-formed but semantically anomalous sentences produced a pattern of brain activity that is distinct in timing and distribution from the patterns elicited by syntactically deviant sentences, and further, that different types of syntactic deviance produced distinct ERP patterns. Forty right-handed young adults read sentences presented at 2 words/sec while ERPs were recorded from over several positions between and within the hemispheres. Half of the sentences were semantically and grammatically acceptable and were controls for the remainder, which contained sentence medial words that violated (1) semantic expectations, (2) phrase structure rules, or (3) WH-movement constraints on Specificity and (4) Subjacency. As in prior research, the semantic anomalies produced a negative potential, N400, that was bilaterally distributed and was largest over posterior regions. The phrase structure violations enhanced the N125 response over anterior regions of the left hemisphere, and elicited a negative response (300-500 msec) over temporal and parietal regions of the left hemisphere. Violations of Specificity constraints produced a slow negative potential, evident by 125 msec, that was also largest over anterior regions of the left hemisphere. Violations of Subjacency constraints elicited a broadly and symmetrically distributed positivity that onset around 200 msec. The distinct timing and distribution of these effects provide biological support for theories that distinguish between these types of grammatical rules and constraints and more generally for the proposal that semantic and grammatical processes are distinct subsystems within the language faculty.


1999 ◽  
Vol 11 (6) ◽  
pp. 598-609 ◽  
Author(s):  
Charan Ranganath ◽  
Ken A. Paller

Previous neuropsychological and neuroimaging results have implicated the prefrontal cortex in memory retrieval, although its precise role is unclear. In the present study, we examined patterns of brain electrical activity during retrieval of episodic and semantic memories. In the episodic retrieval task, participants retrieved autobiographical memories in response to event cues. In the semantic retrieval task, participants generated exemplars in response to category cues. Novel sounds presented intermittently during memory retrieval elicited a series of brain potentials including one identifiable as the P3a potential. Based on prior research linking P3a with novelty detection and with the frontal lobes, we predicted that P3a would be reduced to the extent that novelty detection and memory retrieval interfere with each other. Results during episodic and semantic retrieval tasks were compared to results during a task in which subjects attended to the auditory stimuli. P3a amplitudes were reduced during episodic retrieval, particularly at right lateral frontal scalp locations. A similar but less lateralized pattern of frontal P3a reduction was observed during semantic retrieval. These findings support the notion that the right prefrontal cortex is engaged in the service of memory retrieval, particularly for episodic memories.


Author(s):  
Vesa Putkinen ◽  
Mari Tervaniemi

Studies conducted during the last three decades have identified numerous differences between musicians and non-musicians in neural correlates of sensory, motor, and higher-order cognitive functions. Research employing event-related potentials/fields has been particularly important in this framework. This chapter reviews the evidence that has emerged from these studies with emphasis on longitudinal studies comparing functional brain development in children taking music lessons and those engaged in non-musical activities. The literature provides empirical and theoretical grounds for concluding that musical training enhances sound encoding skills that are relevant for both music and speech processing. The question whether the benefits of musical training transfer to more distantly related cognitive functions remains controversial, however. Finally, it appears likely that training-induced plasticity alone does not account for the differences in brain function between musicians and non-musicians and, conversely, that predisposing factors also play a role.


Sign in / Sign up

Export Citation Format

Share Document