scholarly journals Pathogenesis, diagnosis and treatment of systemic amyloidosis

2001 ◽  
Vol 356 (1406) ◽  
pp. 203-211 ◽  
Author(s):  
M. B. Pepys

Amyloidosis is a disorder of protein folding in which normally soluble proteins are deposited as abnormal, insoluble fibrils that disrupt tissue structure and cause disease. Although about 20 different unrelated proteins can form amyloid fibrils in vivo , all such fibrils share a common cross–β core structure. Some natural wild–type proteins are inherently amyloidogenic, form fibrils and cause amyloidosis in old age or if present for long periods at abnormally high concentration. Other amyloidogenic proteins are acquired or inherited variants, containing amino–acid substitutions that render them unstable so that they populate partly unfolded states under physiological conditions, and these intermediates then aggregate in the stable amyloid fold. In addition to the fibrils, amyloid deposits always contain the non–fibrillar pentraxin plasma protein, serum amyloid P component (SAP), because it undergoes specific calcium–dependent binding to amyloid fibrils. SAP contributes to amyloidogenesis, probably by stabilizing amyloid fibrils and retarding their clearance. Radiolabelled SAP is an extremely useful, safe, specific, non–invasive, quantitative tracer for scintigraphic imaging of systemic amyloid deposits. Its use has demonstrated that elimination of the supply of amyloid fibril precursor proteins leads to regression of amyloid deposits with clinical benefit. Current treatment of amyloidosis comprises careful maintenance of impaired organ function, replacement of end–stage organ failure by dialysis or transplantation, and vigorous efforts to control underlying conditions responsible for production of fibril precursors. New approaches under development include drugs for stabilization of the native fold of precursor proteins, inhibition of fibrillogenesis, reversion of the amyloid to the native fold, and dissociation of SAP to accelerate amyloid fibril clearance in vivo .

2020 ◽  
pp. 2218-2234
Author(s):  
Mark B. Pepys ◽  
Philip N. Hawkins

Amyloidosis is the clinical condition caused by extracellular deposition of amyloid in the tissues. Amyloid deposits are composed of amyloid fibrils, abnormal insoluble protein fibres formed by misfolding of their normally soluble precursors. About 30 different proteins can form clinically or pathologically significant amyloid fibrils in vivo as a result of either acquired or hereditary abnormalities. Small, focal, clinically silent amyloid deposits in the brain, heart, seminal vesicles, and joints are a universal accompaniment of ageing. Clinically important amyloid deposits usually accumulate progressively, disrupting the structure and function of affected tissues and lead inexorably to organ failure and death. There is no licensed treatment which can specifically clear amyloid deposits, but intervention which reduces the availability of the amyloid fibril precursor proteins can arrest amyloid accumulation and may lead to amyloid regression with clinical benefit. Pathology—amyloid fibrils bind Congo red dye producing pathognomonic green birefringence when viewed in high-intensity cross-polarized light, and the protein type can be identified by immunostaining or proteomic analysis. Amyloid deposits always contain a nonfibrillar plasma glycoprotein, serum amyloid P component, the universal presence of which is the basis for use of radioisotope-labelled serum amyloid P component as a diagnostic tracer. Clinicopathological correlation—amyloid may be deposited in any tissue of the body, including blood vessels walls and connective tissue matrix; clinical manifestations are correspondingly diverse. Identification of the amyloid fibril protein is always essential for appropriate clinical management. The specific types of amyloidosis covered in this chapter are reactive systemic (AA) amyloidosis, monoclonal immunoglobulin light chain (AL) amyloidosis, and hereditary systemic amyloidoses (including familial amyloid polyneuropathy).


Author(s):  
M.B. Pepys ◽  
P.N. Hawkins

Amyloidosis is the clinical condition caused by extracellular deposition of amyloid in the tissues. Amyloid deposits are composed of amyloid fibrils, abnormal insoluble protein fibres formed by misfolding of their normally soluble precursors. About 30 different proteins can form clinically or pathologically significant amyloid fibrils in vivo as a result of either acquired or hereditary abnormalities. Small, focal, clinically silent amyloid deposits in the brain, heart, seminal vesicles, and joints are a universal accompaniment of ageing. However, clinically important amyloid deposits usually accumulate progressively, disrupting the structure and function of affected tissues and lead inexorably to organ failure and death. No treatment yet exists which can specifically clear amyloid deposits, but intervention which reduces the availability of the amyloid fibril precursor proteins may lead to amyloid regression with clinical benefit....


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1003-1003 ◽  
Author(s):  
Jing Fu ◽  
Alan Solomon ◽  
Patrick Carberry ◽  
John Castrillon ◽  
Jongho Kim ◽  
...  

Abstract Background AL amyloidosis is the most common type of systemic amyloidosis in western countries and has a poor prognosis, with a median survival of 12 to 18 months. Despite the improved prognosis gained by eliminating the offending plasma cell clone, mortality remains high due to multi-organ dysfunction caused by persistent, insoluble amyloid fibril deposits. The amyloid fibril-reactive murine monoclonal antibody 11-1F4 was designed to target amyloid deposits by directly binding to a conformational epitope present on human light-chain amyloid fibrils. The murine form of this antibody has demonstrated potential to bind amyloid in mice and humans (Blood. 2010 116: 2241) and to clear insoluble fibrils in mice with induced human AL amyloidomas, demonstrating the feasibility of using immunotherapy to elicit rapid destruction of amyloid fibrils. Of great translational importance, a chimeric form of 11-1F4 was produced (CAEL-101) and recently demonstrated therapeutic potential in an open-label, dose-escalation phase 1a/b study where 67% of patients with cardiac or renal amyloidosis demonstrated organ response. There was a statistically significant change in Global Longitudinal Strain with 9/10 patients showing improvement (p=0.004). Since we have shown that CAEL-101 successfully improved organ function, the overall goal of this work is for the first time to explore the diagnostic potential of CAEL-101 radiolabeled with a positron emitting radioisotope for systemic amyloidosis as well as to explore its use as a companion biomarker to stratify patients for CAEL-101 immunotherapy. Methods We obtained human amyloid extracts from the heart (κ1), liver (κ1), spleen (λ1) and kidney (λ6). Lyophilized human amyloid extracts were suspended in 25ml of sterile PBS and homogenized for 3 minutes and centrifuged at 12,000g for 30 minutes. 100mg of the resulting pellet was resuspended in sterile saline. Balb/c mice were then injected subcutaneously with amyloid extract. For imaging experiments, cGMP grade CAEL-101 was radiolabeled with 124I, a positron emitting radioisotope used for PET imaging, with the standard iodegen reaction. Approximately 5 days after human amyloid extract was implanted to form subcutaneous amyloidomas, animals were injected with 200μCi of [124I]CAEL-101 and imaged 1 and 4 days post injection using an Inveon microPET scanner. SUVmax for amyloidomas and contralateral background were obtained by drawing regions of interest in the PMOD software package and calculating tumor-to-background (T:B) ratios at 1 and 4 days post tracer infusion. Results We found that [124I]CAEL-101 successfully imaged 100% of mice bearing human amyloid extracts (κ1, λ1 and λ6 subtypes derived from heart, liver, spleen, and kidney). Human amyloidomas were visualized at both at 1 and 4 days post tracer infusion, with significantly increasing T:B radio by day 4, as expected when imaging large molecular weight antibodies. T:B ratios ranged from 2.1 to 4.2 at 4 days. Mice implanted with κ subtypes demonstrated significantly better in vivo T:B ratios (4.1 +/- 0.20), compared to λ subtypes (2.8 +/- 0.46), although all amyloidomas exhibited T:B uptake > 2.1, which would be clinically significant. Conclusions We have demonstrated for the first time the potential of using radiolabeled CAEL-101 as a companion diagnostic to image real-time targeting of human amyloidosis in vivo. This is highly translatable due to the fact that CAEL-101 has shown great promise in early stage clinical trials to clear insoluble amyloid plaques. Importantly, we successfully used PET imaging to visualize cardiac derived amyloid fibrils from AL amyloidosis patients. Therefore, we anticipate that dedicated gated cardiac PET/CT imaging of radiolabeled CAEL-101 will be successful at visualizing cardiac amyloid deposits in patients, especially with the rich blood flow in cardiac tissue and newer generation highly sensitive, high resolution digital PET scanners, in contrast to the non-cardiac optimized whole body scans used in prior studies with antibody-based PET. Given that we were able to image 100% of implanted human amyloidomas derived from heart, spleen, liver and kidney consisting of both κ and λ subtypes, we envision using CAEL-101 PET imaging to (1) diagnose systemic amyloidosis, (2) stratify patients for CAEL-101 immunotherapy, and (3) quantify peripheral organ amyloid fibril deposition pre and post anti-amyloid therapy. Figure Figure. Disclosures Solomon: Caelum Biosciences: Consultancy, Equity Ownership. Lentzsch:Bayer: Consultancy; BMS: Consultancy; Janssen: Consultancy; Caelum Biosciences: Consultancy, Other: Dr. Lentzsch recused herself as an investigator from the Phase 1a/b trial testing CAEL-101 in 11/2017., Patents & Royalties: Shareholder for Caelum Biosiences. Mintz:Caelum Biosciences: Research Funding.


1994 ◽  
Vol 87 (3) ◽  
pp. 289-295 ◽  
Author(s):  
Philip N. Hawkins

1. Quantitative scintigraphic and turnover studies, utilizing the specific binding affinity of serum amyloid P component for amyloid fibrils, have been developed as a tool for evaluating amyloid deposits in vivo. 2. Serial studies in over 300 patients have shown characteristic, diagnostic tissue distributions of amyloid in different types of amyloidosis. There is generally a poor correlation between quantity of amyloid and associated organ dysfunction. 3. Contrary to previous expectations, regression of amyloid has been demonstrated systematically for the first time: AA, AL and variant transthyretin-associated amyloid deposits often regress rapidly, and sometimes completely, if the supply of fibril protein precursors is substantially reduced.


2015 ◽  
Vol 291 (4) ◽  
pp. 2018-2032 ◽  
Author(s):  
Rosa Crespo ◽  
Eva Villar-Alvarez ◽  
Pablo Taboada ◽  
Fernando A. Rocha ◽  
Ana M. Damas ◽  
...  

Some of the most prevalent neurodegenerative diseases are characterized by the accumulation of amyloid fibrils in organs and tissues. Although the pathogenic role of these fibrils has not been completely established, increasing evidence suggests off-pathway aggregation as a source of toxic/detoxicating deposits that still remains to be targeted. The present work is a step toward the development of off-pathway modulators using the same amyloid-specific dyes as those conventionally employed to screen amyloid inhibitors. We identified a series of kinetic signatures revealing the quantitative importance of off-pathway aggregation relative to amyloid fibrillization; these include non-linear semilog plots of amyloid progress curves, highly variable end point signals, and half-life coordinates weakly influenced by concentration. Molecules that attenuate/intensify the magnitude of these signals are considered promising off-pathway inhibitors/promoters. An illustrative example shows that amyloid deposits of lysozyme are only the tip of an iceberg hiding a crowd of insoluble aggregates. Thoroughly validated using advanced microscopy techniques and complementary measurements of dynamic light scattering, CD, and soluble protein depletion, the new analytical tools are compatible with the high-throughput methods currently employed in drug discovery.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Daniele Peterle ◽  
Giulia Pontarollo ◽  
Stefano Spada ◽  
Paola Brun ◽  
Luana Palazzi ◽  
...  

AbstractAggregation of human wild-type transthyretin (hTTR), a homo-tetrameric plasma protein, leads to acquired senile systemic amyloidosis (SSA), recently recognised as a major cause of cardiomyopathies in 1–3% older adults. Fragmented hTTR is the standard composition of amyloid deposits in SSA, but the protease(s) responsible for amyloidogenic fragments generation in vivo is(are) still elusive. Here, we show that subtilisin secreted from Bacillus subtilis, a gut microbiota commensal bacterium, translocates across a simulated intestinal epithelium and cleaves hTTR both in solution and human plasma, generating the amyloidogenic fragment hTTR(59–127), which is also found in SSA amyloids in vivo. To the best of our knowledge, these findings highlight a novel pathogenic mechanism for SSA whereby increased permeability of the gut mucosa, as often occurs in elderly people, allows subtilisin (and perhaps other yet unidentified bacterial proteases) to reach the bloodstream and trigger generation of hTTR fragments, acting as seeding nuclei for preferential amyloid fibrils deposition in the heart.


2019 ◽  
Vol 44 (1) ◽  
pp. 113-122 ◽  
Author(s):  
Christoph Mann ◽  
Brajesh Pratap Kaistha ◽  
Michael Kacik ◽  
Thorsten Stiewe ◽  
Joachim Hoyer

Background/Aims: Activated fibroblasts are key controllers of extracellular matrix turnover in kidney fibrosis, the pathophysiological end stage of chronic kidney disease. The proliferation of activated fibroblasts depends on the expression of the calcium-dependent potassium channel KCNN4. Expression of this ion channel is upregulated in fibrotic kidneys. Genetic and pharmacological blockade of KCNN4 inhibits fibrosis in vitro and in vivo. Methods: We studied the regulation of KCNN4 and possible involvement of miRNAs in an in-vitro fibrosis model using murine kidney fibroblasts. We tested fibroblast proliferation, channel function, channel expression and expression regulation after FGF-2 stimulation. Results: Proliferation was significantly increased by FGF-2, channel current and expression were almost doubled (+ 91% and +125%, respectively). MiRNA microarray identified upregulation of miRNA-503, which targets RAF1 and thereby controls KCNN4-expression via disinhibition of the Ras/Raf/MEK/ ERK-cascade. Conclusion: This data show a) a profound upregulation of KCNN4 in stimulated fibroblast and b) identifies miR-503 as a regulator of KCNN4 expression.


1983 ◽  
Vol 158 (2) ◽  
pp. 623-628 ◽  
Author(s):  
D H Cohen ◽  
H Feiner ◽  
O Jensson ◽  
B Frangione

Amyloid fibrils were isolated from the leptomeningeal blood vessels obtained at autopsy from three Icelandic patients dying of Hereditary Cerebral Hemorrhage with Amyloidosis (HCHWA) and verified by Congo red staining and electron microscopy. Gel filtration on Sephadex and Ultrogel columns yielded predominantly one component (molecular weight 11,500 daltons) and also another minor component (molecular weight 15,800 daltons). Automated amino terminal sequencing showed these proteins to be similar (36 residues) to a recently described human protein, gamma trace, beginning at its eleventh amino terminal residue. The amyloid deposits in all three patients stained with rabbit anti-gamma trace antiserum. Although the function of gamma trace is not known, it appears to have structural homology with several hormones and has been localized to the brain, pancreas and pituitary. The amyloid fibril subunits seem to have polymerized after cleavage of the amino terminal decapeptide from gamma trace-related proteins. Therefore, HCHWA appears to be the first genetically determined disease related to the gastroenteropancreatic neuroendocrine system.


1984 ◽  
Vol 159 (4) ◽  
pp. 1058-1069 ◽  
Author(s):  
C R Hind ◽  
P M Collins ◽  
D Renn ◽  
R B Cook ◽  
D Caspi ◽  
...  

Serum amyloid P component (SAP) is a normal plasma protein that is of interest because of its presence in amyloid deposits, its presence in normal human glomerular basement membrane, and its stable evolutionary conservation. It has calcium-dependent ligand-binding specificity for amyloid fibrils, fibronectin (Fn), C4-binding protein (C4bp), and agarose. Although the binding to agarose, a linear galactan hydrocolloid derived from some marine algae, is unlikely per se to be related to the physiological function of SAP, it does provide a model system in which to explore the precise ligand requirements of SAP. We report here that the amount of SAP from human, mouse, and plaice (Pleuronectes platessa L.) serum able to bind to agarose from different sources reflect precisely their pyruvate content. Methylation with diazomethane of the carboxyl groups in the pyruvate moiety of agarose completely abolishes SAP binding to agarose. The pyruvate in agarose exists as the 4,6-pyruvate acetal of beta-D-galactopyranose. We have therefore synthesized this galactoside, using a novel procedure, established its structure by analysis of its nuclear magnetic resonance spectra, and shown that it completely inhibits all known calcium-dependent binding reactions of SAP. The R isomer of the cyclic acetal, methyl 4,6-O-(1-carboxyethylidene)-beta-D-galactopyranoside (MO beta DG) was effective at millimolar concentration and was more potent than its noncyclic analogue, while pyruvate, D-galactose, and methyl beta-D-galactopyranoside were without effect. The autologous protein ligands of SAP presumably, therefore express a structural determinant(s) that stereochemically resembles MO beta DG. Availability of this specific, well-characterized, low molecular weight ligand for SAP should facilitate further investigation of the function of SAP and its role in physiological and pathophysiological processes.


2020 ◽  
Vol 295 (49) ◽  
pp. 16572-16584
Author(s):  
Francesca Lavatelli ◽  
Giulia Mazzini ◽  
Stefano Ricagno ◽  
Federica Iavarone ◽  
Paola Rognoni ◽  
...  

Amyloid fibrils are polymeric structures originating from aggregation of misfolded proteins. In vivo, proteolysis may modulate amyloidogenesis and fibril stability. In light chain (AL) amyloidosis, fragmented light chains (LCs) are abundant components of amyloid deposits; however, site and timing of proteolysis are debated. Identification of the N and C termini of LC fragments is instrumental to understanding involved processes and enzymes. We investigated the N and C terminome of the LC proteoforms in fibrils extracted from the hearts of two AL cardiomyopathy patients, using a proteomic approach based on derivatization of N- and C-terminal residues, followed by mapping of fragmentation sites on the structures of native and fibrillar relevant LCs. We provide the first high-specificity map of proteolytic cleavages in natural AL amyloid. Proteolysis occurs both on the LC variable and constant domains, generating a complex fragmentation pattern. The structural analysis indicates extensive remodeling by multiple proteases, largely taking place on poorly folded regions of the fibril surfaces. This study adds novel important knowledge on amyloid LC processing: although our data do not exclude that proteolysis of native LC dimers may destabilize their structure and favor fibril formation, the data show that LC deposition largely precedes the proteolytic events documentable in mature AL fibrils.


Sign in / Sign up

Export Citation Format

Share Document