scholarly journals Downregulation of miR-503 in Activated Kidney Fibroblasts Disinhibits KCNN4 in an in Vitro Model of Kidney Fibrosis

2019 ◽  
Vol 44 (1) ◽  
pp. 113-122 ◽  
Author(s):  
Christoph Mann ◽  
Brajesh Pratap Kaistha ◽  
Michael Kacik ◽  
Thorsten Stiewe ◽  
Joachim Hoyer

Background/Aims: Activated fibroblasts are key controllers of extracellular matrix turnover in kidney fibrosis, the pathophysiological end stage of chronic kidney disease. The proliferation of activated fibroblasts depends on the expression of the calcium-dependent potassium channel KCNN4. Expression of this ion channel is upregulated in fibrotic kidneys. Genetic and pharmacological blockade of KCNN4 inhibits fibrosis in vitro and in vivo. Methods: We studied the regulation of KCNN4 and possible involvement of miRNAs in an in-vitro fibrosis model using murine kidney fibroblasts. We tested fibroblast proliferation, channel function, channel expression and expression regulation after FGF-2 stimulation. Results: Proliferation was significantly increased by FGF-2, channel current and expression were almost doubled (+ 91% and +125%, respectively). MiRNA microarray identified upregulation of miRNA-503, which targets RAF1 and thereby controls KCNN4-expression via disinhibition of the Ras/Raf/MEK/ ERK-cascade. Conclusion: This data show a) a profound upregulation of KCNN4 in stimulated fibroblast and b) identifies miR-503 as a regulator of KCNN4 expression.

1997 ◽  
Vol 34 (5) ◽  
pp. 442-449 ◽  
Author(s):  
R. M. Walton ◽  
D. E. Brown ◽  
D. W. Hamar ◽  
V. P. Meador ◽  
J. W. Horn ◽  
...  

Transient echinocytosis has been reported in association with snake envenomation in humans and dogs. An in vitro model of echinocytosis induced by venom of Crotalus atrox (western diamondback rattlesnake) was established to characterize erythrocyte morphologic changes and to investigate potential mechanisms of echinocytic transformation. Erythrocyte morphologic changes produced after the addition of venom to canine, feline, equine, and human blood were characterized by dose-dependent echinocytosis. Type III echinocytosis was consistently induced in vitro at a dose comparable to in vivo envenomation; higher venom doses produced spheroechinocytic and spherocytic transformations. These changes could not be induced in vitro in the presence of ethylenediaminetetraacetic acid but were observed in heparinized and citrated blood samples, suggesting the participation of calcium or a metalloprotein in echinocytic change. These findings suggest that phospholipase A2 (PLA2), a calcium-dependent enzyme in snake venom, may be responsible for echinocytic transformation via the production of lysolecithin, a known echinocytic agent. Purified PLA2 from C. atrox venom induced dose-dependent echinocytic change in vitro in canine blood. Other potential mechanisms of echinocytic change evaluated in canine blood included erythrocyte cation loss and erythrocyte ATP depletion. In canine blood mixed with venom, erythrocyte sodium and potassium concentrations were consistently less than those of controls, likely as a result of membrane alterations produced by the actions of PLA2. There was no difference in blood ATP concentrations from dogs with snakebite when compared with normal controls; however, the power of this comparison was low. Echinocytosis induced by rattlesnake venom is related to the degree of venom exposure and may correlate clinically with the amount of venom absorbed. Echinocytic transformation in vitro is induced by PLA2 present in venom.


1988 ◽  
Vol 60 (02) ◽  
pp. 205-208 ◽  
Author(s):  
Paul A Kyrle ◽  
Felix Stockenhuber ◽  
Brigitte Brenner ◽  
Heinz Gössinger ◽  
Christian Korninger ◽  
...  

SummaryThe formation of prostacyclin (PGI2) and thromboxane A2 and the release of beta-thromboglobulin (beta-TG) at the site of platelet-vessel wall interaction, i.e. in blood emerging from a standardized injury of the micro vasculature made to determine bleeding time, was studied in patients with end-stage chronic renal failure undergoing regular haemodialysis and in normal subjects. In the uraemic patients, levels of 6-keto-prostaglandin F1α (6-keto-PGF1α) were 1.3-fold to 6.3-fold higher than the corresponding values in the control subjects indicating an increased PGI2 formation in chronic uraemia. Formation of thromboxane B2 (TxB2) at the site of plug formation in vivo and during whole blood clotting in vitro was similar in the uraemic subjects and in the normals excluding a major defect in platelet prostaglandin metabolism in chronic renal failure. Significantly smaller amounts of beta-TG were found in blood obtained from the site of vascular injury as well as after in vitro blood clotting in patients with chronic renal failure indicating an impairment of the a-granule release in chronic uraemia. We therefore conclude that the haemorrhagic diathesis commonly seen in patients with chronic renal failure is - at least partially - due to an acquired defect of the platelet a-granule release and an increased generation of PGI2 in the micro vasculature.


2021 ◽  
Vol 22 (5) ◽  
pp. 2530
Author(s):  
Bijean D. Ford ◽  
Diego Moncada Giraldo ◽  
Camilla Margaroli ◽  
Vincent D. Giacalone ◽  
Milton R. Brown ◽  
...  

Cystic fibrosis (CF) lung disease is dominated by the recruitment of myeloid cells (neutrophils and monocytes) from the blood which fail to clear the lung of colonizing microbes. In prior in vitro studies, we showed that blood neutrophils migrated through the well-differentiated lung epithelium into the CF airway fluid supernatant (ASN) mimic the dysfunction of CF airway neutrophils in vivo, including decreased bactericidal activity despite an increased metabolism. Here, we hypothesized that, in a similar manner to neutrophils, blood monocytes undergo significant adaptations upon recruitment to CFASN. To test this hypothesis, primary human blood monocytes were transmigrated in our in vitro model into the ASN from healthy control (HC) or CF subjects to mimic in vivo recruitment to normal or CF airways, respectively. Surface phenotype, metabolic and bacterial killing activities, and transcriptomic profile by RNA sequencing were quantified post-transmigration. Unlike neutrophils, monocytes were not metabolically activated, nor did they show broad differences in activation and scavenger receptor expression upon recruitment to the CFASN compared to HCASN. However, monocytes recruited to CFASN showed decreased bactericidal activity. RNASeq analysis showed strong effects of transmigration on monocyte RNA profile, with differences between CFASN and HCASN conditions, notably in immune signaling, including lower expression in the former of the antimicrobial factor ISG15, defensin-like chemokine CXCL11, and nitric oxide-producing enzyme NOS3. While monocytes undergo qualitatively different adaptations from those seen in neutrophils upon recruitment to the CF airway microenvironment, their bactericidal activity is also dysregulated, which could explain why they also fail to protect CF airways from infection.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1424
Author(s):  
Seyeon Oh ◽  
Myeongjoo Son ◽  
Joonhong Park ◽  
Donghwan Kang ◽  
Kyunghee Byun

Rosacea is a skin inflammatory condition that is accompanied by not only redness and flushing but also unseen symptoms, such as burning, stinging, and itching. TRPV1 expression in UVB-exposed skin can lead to a painful burning sensation. Upregulated TRPV1 expression helps release neuropeptides, including calcitonin gene-related peptide, pituitary adenylate cyclase-activating polypeptide, and vasoactive intestinal peptide, which can activate macrophage and inflammatory molecules. In this study, we found that radiofrequency (RF) irradiation reduced TRPV1 activation and neuropeptide expression in a UVB-exposed in vivo model and UVB- or heat-treated in an in vitro model. RF irradiation attenuated neuropeptide-induced macrophage activation and inflammatory molecule expression. Interestingly, the burning sensation in the skin of UVB-exposed mice and patients with rosacea was significantly decreased by RF irradiation. These results can provide experimental and molecular evidence on the effective use of RF irradiation for the burning sensation in patients with rosacea.


Author(s):  
Susan Gallogly ◽  
Takeshi Fujisawa ◽  
John D. Hung ◽  
Mairi Brittan ◽  
Elizabeth M. Skinner ◽  
...  

Abstract Purpose Endothelial dysfunction is central to the pathogenesis of acute coronary syndrome. The study of diseased endothelium is very challenging due to inherent difficulties in isolating endothelial cells from the coronary vascular bed. We sought to isolate and characterise coronary endothelial cells from patients undergoing thrombectomy for myocardial infarction to develop a patient-specific in vitro model of endothelial dysfunction. Methods In a prospective cohort study, 49 patients underwent percutaneous coronary intervention with thrombus aspiration. Specimens were cultured, and coronary endothelial outgrowth (CEO) cells were isolated. CEO cells, endothelial cells isolated from peripheral blood, explanted coronary arteries, and umbilical veins were phenotyped and assessed functionally in vitro and in vivo. Results CEO cells were obtained from 27/37 (73%) atherothrombotic specimens and gave rise to cells with cobblestone morphology expressing CD146 (94 ± 6%), CD31 (87 ± 14%), and von Willebrand factor (100 ± 1%). Proliferation of CEO cells was impaired compared to both coronary artery and umbilical vein endothelial cells (population doubling time, 2.5 ± 1.0 versus 1.6 ± 0.3 and 1.2 ± 0.3 days, respectively). Cell migration was also reduced compared to umbilical vein endothelial cells (29 ± 20% versus 85±19%). Importantly, unlike control endothelial cells, dysfunctional CEO cells did not incorporate into new vessels or promote angiogenesis in vivo. Conclusions CEO cells can be reliably isolated and cultured from thrombectomy specimens in patients with acute coronary syndrome. Compared to controls, patient-derived coronary endothelial cells had impaired capacity to proliferate, migrate, and contribute to angiogenesis. CEO cells could be used to identify novel therapeutic targets to enhance endothelial function and prevent acute coronary syndromes.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Edward X. Han ◽  
Hong Qian ◽  
Bo Jiang ◽  
Maria Figetakis ◽  
Natalia Kosyakova ◽  
...  

AbstractA significant barrier to implementation of cell-based therapies is providing adequate vascularization to provide oxygen and nutrients. Here we describe an approach for cell transplantation termed the Therapeutic Vascular Conduit (TVC), which uses an acellular vessel as a scaffold for a hydrogel sheath containing cells designed to secrete a therapeutic protein. The TVC can be directly anastomosed as a vascular graft. Modeling supports the concept that the TVC allows oxygenated blood to flow in close proximity to the transplanted cells to prevent hypoxia. As a proof-of-principle study, we used erythropoietin (EPO) as a model therapeutic protein. If implanted as an arteriovenous vascular graft, such a construct could serve a dual role as an EPO delivery platform and hemodialysis access for patients with end-stage renal disease. When implanted into nude rats, TVCs containing EPO-secreting fibroblasts were able to increase serum EPO and hemoglobin levels for up to 4 weeks. However, constitutive EPO expression resulted in macrophage infiltration and luminal obstruction of the TVC, thus limiting longer-term efficacy. Follow-up in vitro studies support the hypothesis that EPO also functions to recruit macrophages. The TVC is a promising approach to cell-based therapeutic delivery that has the potential to overcome the oxygenation barrier to large-scale cellular implantation and could thus be used for a myriad of clinical disorders. However, a complete understanding of the biological effects of the selected therapeutic is absolutely essential.


2021 ◽  
Vol 22 (12) ◽  
pp. 6196
Author(s):  
Anna Pieniazek ◽  
Joanna Bernasinska-Slomczewska ◽  
Lukasz Gwozdzinski

The presence of toxins is believed to be a major factor in the development of uremia in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). Uremic toxins have been divided into 3 groups: small substances dissolved in water, medium molecules: peptides and low molecular weight proteins, and protein-bound toxins. One of the earliest known toxins is urea, the concentration of which was considered negligible in CKD patients. However, subsequent studies have shown that it can lead to increased production of reactive oxygen species (ROS), and induce insulin resistance in vitro and in vivo, as well as cause carbamylation of proteins, peptides, and amino acids. Other uremic toxins and their participation in the damage caused by oxidative stress to biological material are also presented. Macromolecules and molecules modified as a result of carbamylation, oxidative stress, and their adducts with uremic toxins, may lead to cardiovascular diseases, and increased risk of mortality in patients with CKD.


2021 ◽  
Vol 22 (6) ◽  
pp. 2925
Author(s):  
Victor Häussling ◽  
Romina H Aspera-Werz ◽  
Helen Rinderknecht ◽  
Fabian Springer ◽  
Christian Arnscheidt ◽  
...  

A large British study, with almost 3000 patients, identified diabetes as main risk factor for delayed and nonunion fracture healing, the treatment of which causes large costs for the health system. In the past years, much progress has been made to treat common complications in diabetics. However, there is still a lack of advanced strategies to treat diabetic bone diseases. To develop such therapeutic strategies, mechanisms leading to massive bone alterations in diabetics have to be well understood. We herein describe an in vitro model displaying bone metabolism frequently observed in diabetics. The model is based on osteoblastic SaOS-2 cells, which in direct coculture, stimulate THP-1 cells to form osteoclasts. While in conventional 2D cocultures formation of mineralized matrix is decreased under pre-/diabetic conditions, formation of mineralized matrix is increased in 3D cocultures. Furthermore, we demonstrate a matrix stability of the 3D carrier that is decreased under pre-/diabetic conditions, resembling the in vivo situation in type 2 diabetics. In summary, our results show that a 3D environment is required in this in vitro model to mimic alterations in bone metabolism characteristic for pre-/diabetes. The ability to measure both osteoblast and osteoclast function, and their effect on mineralization and stability of the 3D carrier offers the possibility to use this model also for other purposes, e.g., drug screenings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shinjini Chakraborty ◽  
Veronika Eva Winkelmann ◽  
Sonja Braumüller ◽  
Annette Palmer ◽  
Anke Schultze ◽  
...  

AbstractSingular blockade of C5a in experimental models of sepsis is known to confer protection by rescuing lethality and decreasing pro-inflammatory responses. However, the role of inhibiting C5a has not been evaluated in the context of sterile systemic inflammatory responses, like polytrauma and hemorrhagic shock (PT + HS). In our presented study, a novel and highly specific C5a L-aptamer, NoxD21, was used to block C5a activity in an experimental murine model of PT + HS. The aim of the study was to assess early modulation of inflammatory responses and lung damage 4 h after PT + HS induction. NoxD21-treated PT + HS mice displayed greater polymorphonuclear cell recruitment in the lung, increased pro-inflammatory cytokine levels in the bronchoalveolar lavage fluids (BALF) and reduced myeloperoxidase levels within the lung tissue. An in vitro model of the alveolar-capillary barrier was established to confirm these in vivo observations. Treatment with a polytrauma cocktail induced barrier damage only after 16 h, and NoxD21 treatment in vitro did not rescue this effect. Furthermore, to test the exact role of both the cognate receptors of C5a (C5aR1 and C5aR2), experimental PT + HS was induced in C5aR1 knockout (C5aR1 KO) and C5aR2 KO mice. Following 4 h of PT + HS, C5aR2 KO mice had significantly reduced IL-6 and IL-17 levels in the BALF without significant lung damage, and both, C5aR1 KO and C5aR2 KO PT + HS animals displayed reduced MPO levels within the lungs. In conclusion, the C5aR2 could be a putative driver of early local inflammatory responses in the lung after PT + HS.


Sign in / Sign up

Export Citation Format

Share Document