scholarly journals Bilinear dynamical systems

2005 ◽  
Vol 360 (1457) ◽  
pp. 983-993 ◽  
Author(s):  
W Penny ◽  
Z Ghahramani ◽  
K Friston

In this paper, we propose the use of bilinear dynamical systems (BDS)s for model-based deconvolution of fMRI time-series. The importance of this work lies in being able to deconvolve haemodynamic time-series, in an informed way, to disclose the underlying neuronal activity. Being able to estimate neuronal responses in a particular brain region is fundamental for many models of functional integration and connectivity in the brain. BDSs comprise a stochastic bilinear neurodynamical model specified in discrete time, and a set of linear convolution kernels for the haemodynamics. We derive an expectation-maximization (EM) algorithm for parameter estimation, in which fMRI time-series are deconvolved in an E-step and model parameters are updated in an M-Step. We report preliminary results that focus on the assumed stochastic nature of the neurodynamic model and compare the method to Wiener deconvolution.

2021 ◽  
Author(s):  
Ivan Abraham ◽  
Bahar Shahsavarani ◽  
Ben Zimmerman ◽  
Fatima Husain ◽  
yuliy baryshnikov

Fine-grained information about dynamic structure of cortical networks is crucial in unpacking brain function. Here,we introduced a novel analytical method to characterize the dynamic interaction between distant brain regions,based on cyclicity analysis, and applied it to data from the Human Connectome Project. Resting-state fMRI time series are aperiodic and, hence, lack a base frequency. Cyclicity analysis, which is time-reparametrization invariant, is effective in recovering dynamic temporal ordering of such time series along a circular trajectory without assuming any time scale. Our analysis detected the propagation of slow cortical waves across thebrain with consistent shifts in lead-lag relationships between specific brain regions. We also observed short bursts of strong temporal ordering that dominated overall lead-lag relationships between pairs of regions in the brain, which were modulated by tasks. Our results suggest the possible role played by slow waves of ordered information between brain regions that underlie emergent cognitive function.


Author(s):  
Vangelis P. Oikonomou ◽  
Konstantinos Blekas ◽  
Loukas Astrakas

Functional MRI (fMRI) is a valuable brain imaging technique. A significant problem, when analyzing fMRI time series, is the finding of functional brain networks when the brain is at rest, i.e. no external stimulus is applied to the subject. In this work, we present a probabilistic method to estimate the Resting State Networks (RSNs) using a model-based approach. More specifically, RSNs are assumed to be the result of a clustering procedure. In order to perform the clustering, a mixture of regression models are used. Furthermore, special care has been given in order to incorporate important functionalities, such as spatial and embedded sparsity enforcing properties, through the use of informative priors over the model parameters. Another interesting feature of the proposed scheme is the flexibility to handle all the brain time series at once, allowing more robust solutions. We provide comparative experimental results, using an artificial fMRI dataset and two real resting state fMRI datasets, that empirically illustrate the efficiency of the proposed regression mixture model.


2007 ◽  
Vol 20 (5) ◽  
pp. 491-493 ◽  
Author(s):  
R. Rajesh ◽  
J. Satheeshkumar ◽  
S. Arumugaperumal ◽  
C. Kesavdas

Statistical parametric map of an fMRI time series is used to identify the sensor, motor and cognitive tasks in the specific regions of the brain. This process of obtaining statistical parametric map includes realignment of the slices in various volume acquired during the scanning. This article presents the identification of micro level (10−6) error in the realignment phase.


2017 ◽  
Author(s):  
Matthieu Gilson ◽  
Gustavo Deco ◽  
Karl Friston ◽  
Patric Hagmann ◽  
Dante Mantini ◽  
...  

AbstractOur behavior entails a flexible and context-sensitive interplay between brain areas to integrate information according to goal-directed requirements. How-ever, the neural mechanisms governing the entrainment of functionally specialized brain areas remain poorly understood. In particular, the question arises whether observed changes in the regional activity for different cognitive conditions are explained by modifications of the inputs to the brain or its connectivity? We observe that transitions of fMRI activity between areas convey information about the tasks performed by 19 subjects, watching a movie versus a black screen (rest). We use a model-based framework that explains this spatiotemporal functional connectivity pattern by the local variability for 66 cortical regions and the network effective connectivity between them. We find that, among the estimated model parameters, movie viewing affects to a larger extent the local activity, which we interpret as extrinsic changes related to the increased stimulus load. However, detailed changes in the effective connectivity preserve a balance in the propagating activity and select specific pathways such that high-level brain regions integrate visual and auditory information, in particular boosting the communication between the two brain hemispheres. These findings speak to a dynamic coordination underlying the functional integration in the brain.


2017 ◽  
Author(s):  
Wonsang You ◽  
Catherine Limperopoulos

AbstractEstimating the long memory parameter of the fMRI time series enables us to understand the fractal behavior of neural activity of the brain through fMRI time series. However, the existence of white noise and physiological noise compounds which also have fractal properties prevent us from making the estimation precise. As basic strategies to overcome noises, we address how to estimate the long memory parameter in the presence of additive noises, and how to estimate the long memory parameters of linearly combined long memory processes.


Author(s):  
Rozaida Ghazali ◽  
Abir Hussain ◽  
Nazri Mohd Nawi

This chapter proposes a novel Dynamic Ridge Polynomial Higher Order Neural Network (DRPHONN). The architecture of the new DRPHONN incorporates recurrent links into the structure of the ordinary Ridge Polynomial Higher Order Neural Network (RPHONN) (Shin & Ghosh, 1995). RPHONN is a type of feedforward Higher Order Neural Network (HONN) (Giles & Maxwell, 1987) which implements a static mapping of the input vectors. In order to model dynamical functions of the brain, it is essential to utilize a system that is capable of storing internal states and can implement complex dynamic system. Neural networks with recurrent connections are dynamical systems with temporal state representations. The dynamic structure approach has been successfully used for solving varieties of problems, such as time series forecasting (Zhang & Chan, 2000; Steil, 2006), approximating a dynamical system (Kimura & Nakano, 2000), forecasting a stream flow (Chang et al, 2004), and system control (Reyes et al, 2000). Motivated by the ability of recurrent dynamic systems in real world applications, the proposed DRPHONN architecture is presented in this chapter.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huihui Chen ◽  
Yining Zhang ◽  
Limei Zhang ◽  
Lishan Qiao ◽  
Dinggang Shen

Brain functional network (BFN) analysis is becoming a crucial way to explore the inherent organized pattern of the brain and reveal potential biomarkers for diagnosing neurological or psychological disorders. In so doing, a well-estimated BFN is of great concern. In practice, however, noises or artifacts involved in the observed data (i.e., fMRI time series in this paper) generally lead to a poor estimation of BFN, and thus a complex preprocessing pipeline is often used to improve the quality of the data prior to BFN estimation. One of the popular preprocessing steps is data-scrubbing that aims at removing “bad” volumes from the fMRI time series according to the amplitude of the head motion. Despite its helpfulness in general, this traditional scrubbing scheme cannot guarantee that the removed volumes are necessarily unhelpful, since such a step is fully independent to the subsequent BFN estimation task. Moreover, the removal of volumes would reduce the statistical power, and different numbers of volumes are generally scrubbed for different subjects, resulting in an inconsistency or bias in the estimated BFNs. To address these issues, we develop a new learning framework that conducts BFN estimation and data-scrubbing simultaneously by an alternating optimization algorithm. The newly developed algorithm adaptively weights volumes (instead of removing them directly) for the task of BFN estimation. As a result, the proposed method can not only reduce the difficulty of threshold selection involved in the traditional scrubbing scheme, but also provide a more flexible framework that scrubs the data in the subsequent FBN estimation model. Finally, we validate the proposed method by identifying subjects with mild cognitive impairment (MCI) from normal controls based on the estimated BFNs, achieving an 80.22% classification accuracy, which significantly improves the baseline methods.


Author(s):  
Jagath C. Rajapakse ◽  
◽  
Frithjof Kruggel ◽  
Stefan Zysset ◽  
D. Yves von Cramon ◽  
...  

Time-series provided by high-resolution functional MR imaging (fMRI) bear rich information of underlying physiological processes and associated hemodynamic events of human brain activation during sensory and cognitive stimulation. A computational model to represent neuronal and hemodynamic events in fMRI time-series is presented where the transient neuronal activities are modeled with exponential functions and coupling between neuronal response and hemodynamic response is approximated by a linear convolution. The hemodynamic parameters, namely lag and dispersion, and neuronal parameters, namely rise time and fall time, quantitate some of the neuronal and hemodynamic events following a sensory, motor, or cognitive task. Methods to estimate neuronal responses with hemodynamic demodulation and parameters assuming exponential transient changes are presented. Experiments with simulated time-series demonstrate the robustness of the parameter estimation scheme and with fMRI data obtained in a memory retrieval task is used to illustrate how the model parameters can improve detection of relevant activation in fMRI. This paper highlights the potentials of fMRI to study neuronal populations and the use of the proposed model in identifying neurophysiological events of brain function.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rossana Mastrandrea ◽  
Fabrizio Piras ◽  
Andrea Gabrielli ◽  
Nerisa Banaj ◽  
Guido Caldarelli ◽  
...  

AbstractNetwork neuroscience shed some light on the functional and structural modifications occurring to the brain associated with the phenomenology of schizophrenia. In particular, resting-state functional networks have helped our understanding of the illness by highlighting the global and local alterations within the cerebral organization. We investigated the robustness of the brain functional architecture in 44 medicated schizophrenic patients and 40 healthy comparators through an advanced network analysis of resting-state functional magnetic resonance imaging data. The networks in patients showed more resistance to disconnection than in healthy controls, with an evident discrepancy between the two groups in the node degree distribution computed along a percolation process. Despite a substantial similarity of the basal functional organization between the two groups, the expected hierarchy of healthy brains' modular organization is crumbled in schizophrenia, showing a peculiar arrangement of the functional connections, characterized by several topologically equivalent backbones. Thus, the manifold nature of the functional organization’s basal scheme, together with its altered hierarchical modularity, may be crucial in the pathogenesis of schizophrenia. This result fits the disconnection hypothesis that describes schizophrenia as a brain disorder characterized by an abnormal functional integration among brain regions.


Sign in / Sign up

Export Citation Format

Share Document