scholarly journals The effect of climate anomalies and human ignition factor on wildfires in Russian boreal forests

2007 ◽  
Vol 363 (1501) ◽  
pp. 2329-2337 ◽  
Author(s):  
Frédéric Achard ◽  
Hugh D Eva ◽  
Danilo Mollicone ◽  
René Beuchle

Over the last few years anomalies in temperature and precipitation in northern Russia have been regarded as manifestations of climate change. During the same period exceptional forest fire seasons have been reported, prompting many authors to suggest that these in turn are due to climate change. In this paper, we examine the number and areal extent of forest fires across boreal Russia for the period 2002–2005 within two forest categories: ‘intact forests’ and ‘non-intact forests’. Results show a far lower density of fire events in intact forests (5–14 times less) and that those events tend to be in the first 10 km buffer zone inside intact forest areas. Results also show that, during exceptional climatic years (2002 and 2003), fire event density is twice that found during normal years (2004 and 2005) and average areal extent of fire events (burned area) in intact forests is 2.5 times larger than normal. These results suggest that a majority of the fire events in boreal Russia are of human origin and a maximum of one-third of their impact (areal extension) can be attributed to climate anomalies alone, the rest being due to the combined effect of human disturbances and climate anomalies.

2021 ◽  
Author(s):  
Leif Backman ◽  
Tuula Aalto ◽  
Juha Aalto ◽  
Tiina Markkanen ◽  
Laura Thölix ◽  
...  

<p>The climate in the Boreal area is warming at a pace that is exceeding the global average. Both temperature and precipitation is projected to increase due to climate change. The gross primary production in the forested area is also projected to increase, as well as the soil respiration. The burned area is sensitive to the meteorological forcing and the risk of ignition depends on the amount and properties of the litter. Overall climate change has a potential to increase the fire risk in the Boreal forests.</p><p>The effects of projected climate change on forest fires in Fennoscandia, and in parts of Russia adjacent to Finland, were simulated with the JSBACH-SPITFIRE. JSBACH is the land model in the Earth system models of the Max-Planck Institute for Meteorology. SPITFIRE is a mechanistic fire model, driven by meteorology, vegetation cover, fuel load and fuel properties. The model simulates fire risk, number of fires and burned area fraction. SPITFIRE uses ignition rates and distinguishes between ignition events caused by lightning and humans. Ignition events result in fire only when enough fuel is present, and the fuel is sufficiently dry. The JSBACH-SPITFIRE model was driven by downscaled and bias corrected meteorological data from the EURO-CORDEX initiative, for the period from 1951 to 2100. The model domain was the land area within 55-71°N and 5-38°E. A subset of the EUR-44 domain was regridded to 0.5° resolution for our model domain. The global driving models used for producing the EURO-CORDEX data used here were CanESM2, CNRM-CM5, MIROC5. We selected driver models that represent mid-range regarding the projected change in temperature and precipitation for Finland under RCP4.5 and RCP8.5. We used daily bias corrected data of precipitation and temperature from 1951 to 2100 for both RCP4.5 and RCP8.5 climate change projections. In addition, daily data of relative humidity, wind speed, longwave and shortwave radiation were used for the historical (1951-2005) and scenario period (2006-2100).</p><p>Preliminary results indicate that the increase in temperature, which affects the drying rate of the fuel, is the major factor for driving the changes in forest fires in the simulations.</p>


2021 ◽  
Vol 13 (1) ◽  
pp. 432
Author(s):  
Aru Han ◽  
Song Qing ◽  
Yongbin Bao ◽  
Li Na ◽  
Yuhai Bao ◽  
...  

An important component in improving the quality of forests is to study the interference intensity of forest fires, in order to describe the intensity of the forest fire and the vegetation recovery, and to improve the monitoring ability of the dynamic change of the forest. Using a forest fire event in Bilahe, Inner Monglia in 2017 as a case study, this study extracted the burned area based on the BAIS2 index of Sentinel-2 data for 2016–2018. The leaf area index (LAI) and fractional vegetation cover (FVC), which are more suitable for monitoring vegetation dynamic changes of a burned area, were calculated by comparing the biophysical and spectral indices. The results showed that patterns of change of LAI and FVC of various land cover types were similar post-fire. The LAI and FVC of forest and grassland were high during the pre-fire and post-fire years. During the fire year, from the fire month (May) through the next 4 months (September), the order of areas of different fire severity in terms of values of LAI and FVC was: low > moderate > high severity. During the post fire year, LAI and FVC increased rapidly in areas of different fire severity, and the ranking of areas of different fire severity in terms of values LAI and FVC was consistent with the trend observed during the pre-fire year. The results of this study can improve the understanding of the mechanisms involved in post-fire vegetation change. By using quantitative inversion, the health trajectory of the ecosystem can be rapidly determined, and therefore this method can play an irreplaceable role in the realization of sustainable development in the study area. Therefore, it is of great scientific significance to quantitatively retrieve vegetation variables by remote sensing.


2019 ◽  
Vol 9 (19) ◽  
pp. 4155
Author(s):  
Pérez-Sánchez ◽  
Jimeno-Sáez ◽  
Senent-Aparicio ◽  
Díaz-Palmero ◽  
de Dios Cabezas-Cerezo

Wildfires in Mediterranean regions have become a serious problem, and it is currently the main cause of forest loss. Numerous prediction methods have been applied worldwide to estimate future fire activity and area burned in order to provide a stable basis for future allocation of fire-fighting resources. The present study investigated the performance of an artificial neural network (ANN) in burned area size prediction and to assess the evolution of future wildfires and the area concerned under climate change in southern Spain. The study area comprised 39.41 km2 of land burned from 2000 to 2014. ANNs were used in two subsequential phases: classifying the size of the wildfires and predicting the burned surface for fires larger than 30,000 m2. Matrix of confusion and 10-fold cross-validations were used to evaluate ANN classification and mean absolute deviation, root mean square error, mean absolute percent error and bias, which were the metrics used for burned area prediction. The success rate achieved was above 60–70% depending on the zone. An average temperature increase of 3 °C and a 20% increase in wind speed during 2071–2100 results in a significant increase of the number of fires, up to triple the current figure, resulting in seven times the average yearly burned surface depending on the zone and the climate change scenario.


2020 ◽  
Author(s):  
Matthias Boer ◽  
Víctor Resco De Dios ◽  
Ross Bradstock

<p>The 2019/20 forest fires in eastern Australia burned over 5.8 million hectares of mainly temperate broadleaf forest between September 2019 and January 2020. This burned area figure is expected to rise over the remainder of the austral summer, but is already an order of magnitude larger than the mean annual burned area for Australian forest fires over the last 20 years, which is ~0.59 Mha per year. Here we show that this forest fire event is of a record-breaking scale, both nationally and globally, and was pre-conditioned by wide-spread prolonged drought and extreme heat.</p><p>We analysed global remotely sensed burned area data for 2000-2019 to estimate annual burned area fractions of all continental forest biomes. The annual burned area fraction, which is related to the length of fire intervals and other aspects of fire regimes, allows us to compare levels of fire activity across different forest biomes and continents.</p><p>Though very large fires occur in some forest biomes, such as the boreal forests of North-America and Asia, over the 20 years covered by our data set, annual burned area fractions have been very small (<0.03) for nearly all continental forest biomes including Australia’s temperate broadleaf forest biome. These findings provide a global historical reference for the interpretation of the scale of the 2019/20 eastern Australian mega forest fires.</p><p>With fire activity in all forest biomes strongly constrained by the moisture content of the fuels, explanations for the unconstrained burning of millions of hectares of temperate broadleaf forest in a single season must be sought in the extreme drought that has affected eastern Australia for the last two years. We use gridded daily soil moisture predictions for the continent to show how widespread and prolonged dryness set the stage for the unprecedented forest fire event of 2019/20.</p>


2017 ◽  
Author(s):  
Yannick Le Page ◽  
Douglas Morton ◽  
Hartin Corinne ◽  
Bond-Lamberty Ben ◽  
José Miguel Cardoso Pereira ◽  
...  

Abstract. Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, common under current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – the representative concentration pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.


2017 ◽  
Vol 8 (4) ◽  
pp. 1237-1246 ◽  
Author(s):  
Yannick Le Page ◽  
Douglas Morton ◽  
Corinne Hartin ◽  
Ben Bond-Lamberty ◽  
José Miguel Cardoso Pereira ◽  
...  

Abstract. Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.


2020 ◽  
Author(s):  
Juha Aalto ◽  
Leif Backman ◽  
Timo Virtanen ◽  
Tero Partanen ◽  
Ilari Lehtonen ◽  
...  

<p>In recent years, large forest fires in Fennoscandia have shown that wildfires can have a strong impact on society also in northern Europe. In the future, meteorological conditions are expected to become increasingly favorable for wildfires due to climate change. An important aspect in fire management are the national forest management strategies that play a crucial role in controlling e.g. fuel availability in forests, and further areal coverage of burned area. In addition, the effectiveness of rescue services is crucial. Thus, the development of fire risk prediction and fire detection systems, as well as, modeling of spread of fires and emissions of harmful ingredients, such as black carbon are urgently required to improve the societies preparedness to the increasing thread. In this presentation we synthetize the current state-of-the-art understanding of wildfires in Fennoscandia from a wide range of key perspectives: historical fire regimes, monitoring using in-situ and remote-sensing technologies, integrated modeling (e.g. climate models, spatial fire propagation models forced with operational weather forecast model) and fire suppression. In addition, we assess the amount of black carbon emissions released from recent wildfires in Fennoscandia. These results will help northern societies to tackle against the negative impacts of climate change and to support the development of efficient mitigation strategies. In the upcoming decades the effective management of wildfires is especially relevant, as wildfires greatly affect regional carbon budgets and mitigation efforts. </p>


Sign in / Sign up

Export Citation Format

Share Document