scholarly journals APOBEC proteins and intrinsic resistance to HIV-1 infection

2008 ◽  
Vol 364 (1517) ◽  
pp. 675-687 ◽  
Author(s):  
Michael H Malim

Members of the APOBEC family of cellular polynucleotide cytidine deaminases, most notably APOBEC3G and APOBEC3F, are potent inhibitors of HIV-1 infection. Wild type HIV-1 infections are largely spared from APOBEC3G/F function through the action of the essential viral protein, Vif. In the absence of Vif, APOBEC3G/F are encapsidated by budding virus particles leading to excessive cytidine (C) to uridine (U) editing of negative sense reverse transcripts in newly infected cells. This registers as guanosine (G) to adenosine (A) hypermutations in plus-stranded cDNA. In addition to this profoundly debilitating effect on genetic integrity, APOBEC3G/F also appear to inhibit viral DNA synthesis by impeding the translocation of reverse transcriptase along template RNA. Because the functions of Vif and APOBEC3G/F proteins oppose each other, it is likely that fluctuations in the Vif–APOBEC balance may influence the natural history of HIV-1 infection, as well as viral sequence diversification and evolution. Given Vif's critical role in suppressing APOBEC3G/F function, it can be argued that pharmacologic strategies aimed at restoring the activity of these intrinsic anti-viral factors in the context of infected cells in vivo have clear therapeutic merit, and therefore deserve aggressive pursuit.

2017 ◽  
Vol 25 (5) ◽  
pp. 1062-1064 ◽  
Author(s):  
Harshana S. De Silva Feelixge ◽  
Keith R. Jerome
Keyword(s):  

2021 ◽  
Vol 95 (9) ◽  
Author(s):  
Teslin S. Sandstrom ◽  
Nischal Ranganath ◽  
Stephanie C. Burke Schinkel ◽  
Syim Salahuddin ◽  
Oussama Meziane ◽  
...  

ABSTRACT The use of unique cell surface markers to target and eradicate HIV-infected cells has been a longstanding objective of HIV-1 cure research. This approach, however, overlooks the possibility that intracellular changes present within HIV-infected cells may serve as valuable therapeutic targets. For example, the identification of dysregulated antiviral signaling in cancer has led to the characterization of oncolytic viruses capable of preferentially killing cancer cells. Since impairment of cellular antiviral machinery has been proposed as a mechanism by which HIV-1 evades immune clearance, we hypothesized that HIV-infected macrophages (an important viral reservoir in vivo) would be preferentially killed by the interferon-sensitive oncolytic Maraba virus MG1. We first showed that HIV-infected monocyte-derived macrophages (MDM) were more susceptible to MG1 infection and killing than HIV-uninfected cells. As MG1 is highly sensitive to type I interferons (IFN-I), we then investigated whether we could identify IFN-I signaling differences between HIV-infected and uninfected MDM and found evidence of impaired IFN-α responsiveness within HIV-infected cells. Finally, to assess whether MG1 could target a relevant, primary cell reservoir of HIV-1, we investigated its effects in alveolar macrophages (AM) obtained from effectively treated individuals living with HIV-1. As observed with in vitro-infected MDM, we found that HIV-infected AM were preferentially eliminated by MG1. In summary, the oncolytic rhabdovirus MG1 appears to preferentially target and kill HIV-infected cells via impairment of antiviral signaling pathways and may therefore provide a novel approach to an HIV-1 cure. IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) remains a treatable, but incurable, viral infection. The establishment of viral reservoirs containing latently infected cells remains the main obstacle in the search for a cure. Cure research has also focused on only one cellular target of HIV-1 (the CD4+ T cell) while largely overlooking others (such as macrophages) that contribute to HIV-1 persistence. In this study, we address these challenges by describing a potential strategy for the eradication of HIV-infected macrophages. Specifically, we show that an engineered rhabdovirus—initially developed as a cancer therapy—is capable of preferential infection and killing of HIV-infected macrophages, possibly via the same altered antiviral signaling seen in cancer cells. As this rhabdovirus is currently being explored in phase I/II clinical trials, there is potential for this approach to be readily adapted for use within the HIV-1 cure field.


Science ◽  
2016 ◽  
Vol 352 (6288) ◽  
pp. 1001-1004 ◽  
Author(s):  
C.-L. Lu ◽  
D. K. Murakowski ◽  
S. Bournazos ◽  
T. Schoofs ◽  
D. Sarkar ◽  
...  

2001 ◽  
Vol 26 (5) ◽  
pp. 397-404 ◽  
Author(s):  
Georg A. Funk ◽  
Marek Fischer ◽  
Beda Joos ◽  
Milos Opravil ◽  
Huldrych F. Günthard ◽  
...  

PLoS Biology ◽  
2006 ◽  
Vol 4 (4) ◽  
pp. e90 ◽  
Author(s):  
Becca Asquith ◽  
Charles T. T Edwards ◽  
Marc Lipsitch ◽  
Angela R McLean

2009 ◽  
Vol 54 (1) ◽  
pp. 491-501 ◽  
Author(s):  
Olivier Delelis ◽  
Sylvain Thierry ◽  
Frédéric Subra ◽  
Françoise Simon ◽  
Isabelle Malet ◽  
...  

ABSTRACT Integrase (IN), the HIV-1 enzyme responsible for the integration of the viral genome into the chromosomes of infected cells, is the target of the recently approved antiviral raltegravir (RAL). Despite this drug's activity against viruses resistant to other antiretrovirals, failures of raltegravir therapy were observed, in association with the emergence of resistance due to mutations in the integrase coding region. Two pathways involving primary mutations on residues N155 and Q148 have been characterized. It was suggested that mutations at residue Y143 might constitute a third primary pathway for resistance. The aims of this study were to investigate the susceptibility of HIV-1 Y143R/C mutants to raltegravir and to determine the effects of these mutations on the IN-mediated reactions. Our observations demonstrate that Y143R/C mutants are strongly impaired for both of these activities in vitro. However, Y143R/C activity can be kinetically restored, thereby reproducing the effect of the secondary G140S mutation that rescues the defect associated with the Q148R/H mutants. A molecular modeling study confirmed that Y143R/C mutations play a role similar to that determined for Q148R/H mutations. In the viral replicative context, this defect leads to a partial block of integration responsible for a weak replicative capacity. Nevertheless, the Y143 mutant presented a high level of resistance to raltegravir. Furthermore, the 50% effective concentration (EC50) determined for Y143R/C mutants was significantly higher than that obtained with G140S/Q148R mutants. Altogether our results not only show that the mutation at position Y143 is one of the mechanisms conferring resistance to RAL but also explain the delayed emergence of this mutation.


2017 ◽  
Vol 114 (18) ◽  
pp. E3659-E3668 ◽  
Author(s):  
Ann Wiegand ◽  
Jonathan Spindler ◽  
Feiyu F. Hong ◽  
Wei Shao ◽  
Joshua C. Cyktor ◽  
...  

Little is known about the fraction of human immunodeficiency virus type 1 (HIV-1) proviruses that express unspliced viral RNA in vivo or about the levels of HIV RNA expression within single infected cells. We developed a sensitive cell-associated HIV RNA and DNA single-genome sequencing (CARD-SGS) method to investigate fractional proviral expression of HIV RNA (1.3-kb fragment of p6, protease, and reverse transcriptase) and the levels of HIV RNA in single HIV-infected cells from blood samples obtained from individuals with viremia or individuals on long-term suppressive antiretroviral therapy (ART). Spiking experiments show that the CARD-SGS method can detect a single cell expressing HIV RNA. Applying CARD-SGS to blood mononuclear cells in six samples from four HIV-infected donors (one with viremia and not on ART and three with viremia suppressed on ART) revealed that an average of 7% of proviruses (range: 2–18%) expressed HIV RNA. Levels of expression varied from one to 62 HIV RNA molecules per cell (median of 1). CARD-SGS also revealed the frequent expression of identical HIV RNA sequences across multiple single cells and across multiple time points in donors on suppressive ART consistent with constitutive expression of HIV RNA in infected cell clones. Defective proviruses were found to express HIV RNA at levels similar to those proviruses that had no obvious defects. CARD-SGS is a useful tool to characterize fractional proviral expression in single infected cells that persist despite ART and to assess the impact of experimental interventions on proviral populations and their expression.


2020 ◽  
Vol 8 (5) ◽  
pp. 710 ◽  
Author(s):  
Guillaume Beaudoin-Bussières ◽  
Jérémie Prévost ◽  
Gabrielle Gendron-Lepage ◽  
Bruno Melillo ◽  
Junhua Chen ◽  
...  

HIV-1-infected individuals raise a polyclonal antibody response targeting multiple envelope glycoprotein (Env) epitopes. Interestingly, two classes of non-neutralizing CD4-induced (CD4i) antibodies, present in the majority of HIV-1-infected individuals have been described to mediate antibody-dependent cellular cytotoxicity (ADCC) in the presence of small CD4 mimetic compounds (CD4mc). These antibodies recognize the coreceptor binding site (CoRBS) and the constant region one and two (C1C2 or inner domain cluster A) of the gp120. In combination with CD4mc they have been shown to stabilize an antibody-vulnerable Env conformation, known as State 2A. Here we evaluated the importance of these two families of Abs in ADCC responses by immunizing guinea pigs with gp120 immunogens that have been modified to elicit or not these types of antibodies. Underlying the importance of anti-CoRBS and anti-cluster A Abs in stabilizing State 2A, ADCC responses were only observed in the presence of these two types of CD4i antibodies. Altogether, our results suggest that these two families of CD4i antibodies must be taken into account when considering future strategies relying on the use of CD4mc to eliminate HIV-1-infected cells in vivo.


2020 ◽  
pp. jbc.RA120.015828
Author(s):  
Kirsten M. Knecht ◽  
Yingxia Hu ◽  
Diana Rubene ◽  
Matthew Cook ◽  
Samantha J Ziegler ◽  
...  

The mammalian apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3 or A3) family of cytidine deaminases restrict viral infections by mutating viral DNA and impeding reverse transcription. To overcome this antiviral activity, most lentiviruses express a viral accessory protein called Vif, which recruits A3 proteins to Cullin-RING E3 ubiquitin ligases such as Cul5 for ubiquitylation and subsequent proteasomal degradation. While Vif proteins from primate lentiviruses like HIV-1 utilize the transcription factor CBFβ as a non-canonical cofactor to stabilize the complex, maedi-visna virus (MVV) Vif hijacks cyclophilin A (CypA) instead. Since CBFβ and CypA are both highly conserved among mammals, the requirement for two different cellular cofactors suggests that these two A3-targeting Vif proteins have different biochemical and structural properties. To investigate this topic, we used a combination of in vitro biochemical assays and in vivo A3 degradation assays to study motifs required for MVV Vif to bind zinc ion, Cul5, and the cofactor CypA. Our results demonstrate that while some common motifs between HIV-1 Vif and MVV Vif are involved in recruiting Cul5, different determinants in MVV Vif are required for cofactor binding and stabilization of the E3 ligase complex, such as the zinc-binding motif and N- and C-terminal regions of the protein. Results from this study advance our understanding of the mechanism of MVV Vif recruitment of cellular factors and the evolution of lentiviral Vif proteins.


Sign in / Sign up

Export Citation Format

Share Document