scholarly journals The neuroscience of primate intellectual evolution: natural selection and passive and intentional niche construction

2008 ◽  
Vol 363 (1500) ◽  
pp. 2229-2241 ◽  
Author(s):  
Atsushi Iriki ◽  
Osamu Sakura

We trained Japanese macaque monkeys to use tools, an advanced cognitive function monkeys do not exhibit in the wild, and then examined their brains for signs of modification. Following tool-use training, we observed neurophysiological, molecular genetic and morphological changes within the monkey brain. Despite being ‘artificially’ induced, these novel behaviours and neural connectivity patterns reveal overlap with those of humans. Thus, they may provide us with a novel experimental platform for studying the mechanisms of human intelligence, for revealing the evolutionary path that created these mechanisms from the ‘raw material’ of the non-human primate brain, and for deepening our understanding of what cognitive abilities are and of those that are not uniquely human. On these bases, we propose a theory of ‘intentional niche construction’ as an extension of natural selection in order to reveal the evolutionary mechanisms that forged the uniquely intelligent human brain.

Paleobiology ◽  
1998 ◽  
Vol 24 (1) ◽  
pp. 17-36 ◽  
Author(s):  
Loren H. Smith

Phenotypic variation within species provides the raw material acted upon by natural selection and other evolutionary mechanisms. As such, the range and variation of morphology within a species can play an important role in determining the tempo of evolution. The range and variance of aspects of cranidial morphology for nine lower Paleozoic trilobites were measured to identify microevolutionary correlates of macroevolutionary patterns. Comparisons were made among sets of homologous landmarks or upon partial warp vector matrices containing similar proportions of variance. Rarefaction and bootstrap analyses helped estimate the effects of sampling. Levels of variance and range of morphology differed considerably within and among time periods. There is no significant temporal decline in the variance or range of morphology, suggesting that developmental or genomic constraints may not have been the primary factors controlling the tempo of trilobite macroevolution. The spatial distribution of cranidial variance differed considerably among taxa, suggesting that a complex set of developmental processes governed the morphogenesis of cranidia within trilobites.


2021 ◽  
Author(s):  
◽  
Julia Loepelt

<p>Identifying factors that may influence cognitive variation in the wild is essential for furthering our understanding of how ecological and evolutionary mechanisms shape cognitive phenotypes. Yet, studies on cognitive variation in the wild and its causes and consequences are still rare. In both the wild and captivity, birds have become a centre of attention, revealing striking cognitive abilities that may rival the great apes. While much of this research has focused on corvids, few parrot species have been studied thoroughly. One of these species is the kea (Nestor notabilis), which has shown remarkable social and physical cognitive skills, including the use of tools. This thesis explores the innovative problem-solving skills of the only other Nestor species, the kaka (Nestor meridionalis), with the overall aim to investigate ecological, developmental and genetic factors influencing within-species variation of these abilities in the wild.  When confronted with a series of novel problems at a familiar feeding station, juvenile kaka outperform adult kaka, especially in their ability and efficiency to find an innovative solution to acquiring the food reward. This is particularly the case when modification of a pre-learned behavioural response is required and is further expressed in the juveniles’ higher individual persistence and exploration diversity, which suggests they may be more behaviourally flexible. Testing for this hypothesis using a Multi-Access-Box approach confirmed faster, more flexible discovery of alternative solving strategies in younger birds.  Further analysis of the kaka’s innovation abilities uncovered potential genetic effects on solving ability as shown by full sibling comparison. This provides first potential evidence for heritability of a cognitive trait in the wild and thus presents an important step for furthering our understanding of how natural selection may act on cognitive traits. Between-species comparison of kaka and kea in the physical and social cognitive domains reveals striking similarities. This suggests that the differences in the life histories of these two species play a secondary role in the evolution of Nestor parrot cognitive abilities, which may instead be retained from their common ancestor.</p>


2018 ◽  
Vol 373 (1756) ◽  
pp. 20170297 ◽  
Author(s):  
Joah R. Madden ◽  
Ellis J. G. Langley ◽  
Mark A. Whiteside ◽  
Christine E. Beardsworth ◽  
Jayden O. van Horik

Cognitive abilities probably evolve through natural selection if they provide individuals with fitness benefits. A growing number of studies demonstrate a positive relationship between performance in psychometric tasks and (proxy) measures of fitness. We assayed the performance of 154 common pheasant ( Phasianus colchicus ) chicks on tests of acquisition and reversal learning, using a different set of chicks and different set of cue types (spatial location and colour) in each of two years and then followed their fates after release into the wild. Across all birds, individuals that were slow to reverse previously learned associations were more likely to survive to four months old. For heavy birds, individuals that rapidly acquired an association had improved survival to four months, whereas for light birds, slow acquirers were more likely to be alive. Slow reversers also exhibited less exploratory behaviour in assays when five weeks old. Fast acquirers visited more artificial feeders after release. In contrast to most other studies, we showed that apparently ‘poor’ cognitive performance (slow reversal speed suggesting low behavioural flexibility) correlates with fitness benefits in at least some circumstances. This correlation suggests a novel mechanism by which continued exaggeration of cognitive abilities may be constrained. This article is part of the theme issue ‘Causes and consequences of individual differences in cognitive abilities’.


2021 ◽  
Author(s):  
◽  
Julia Loepelt

<p>Identifying factors that may influence cognitive variation in the wild is essential for furthering our understanding of how ecological and evolutionary mechanisms shape cognitive phenotypes. Yet, studies on cognitive variation in the wild and its causes and consequences are still rare. In both the wild and captivity, birds have become a centre of attention, revealing striking cognitive abilities that may rival the great apes. While much of this research has focused on corvids, few parrot species have been studied thoroughly. One of these species is the kea (Nestor notabilis), which has shown remarkable social and physical cognitive skills, including the use of tools. This thesis explores the innovative problem-solving skills of the only other Nestor species, the kaka (Nestor meridionalis), with the overall aim to investigate ecological, developmental and genetic factors influencing within-species variation of these abilities in the wild.  When confronted with a series of novel problems at a familiar feeding station, juvenile kaka outperform adult kaka, especially in their ability and efficiency to find an innovative solution to acquiring the food reward. This is particularly the case when modification of a pre-learned behavioural response is required and is further expressed in the juveniles’ higher individual persistence and exploration diversity, which suggests they may be more behaviourally flexible. Testing for this hypothesis using a Multi-Access-Box approach confirmed faster, more flexible discovery of alternative solving strategies in younger birds.  Further analysis of the kaka’s innovation abilities uncovered potential genetic effects on solving ability as shown by full sibling comparison. This provides first potential evidence for heritability of a cognitive trait in the wild and thus presents an important step for furthering our understanding of how natural selection may act on cognitive traits. Between-species comparison of kaka and kea in the physical and social cognitive domains reveals striking similarities. This suggests that the differences in the life histories of these two species play a secondary role in the evolution of Nestor parrot cognitive abilities, which may instead be retained from their common ancestor.</p>


2017 ◽  
Vol 7 (5) ◽  
pp. 20160147 ◽  
Author(s):  
Kevin Laland ◽  
John Odling-Smee ◽  
John Endler

Organisms modify and choose components of their local environments. This ‘niche construction’ can alter ecological processes, modify natural selection and contribute to inheritance through ecological legacies. Here, we propose that niche construction initiates and modifies the selection directly affecting the constructor, and on other species, in an orderly, directed and sustained manner. By dependably generating specific environmental states, niche construction co-directs adaptive evolution by imposing a consistent statistical bias on selection. We illustrate how niche construction can generate this evolutionary bias by comparing it with artificial selection. We suggest that it occupies the middle ground between artificial and natural selection. We show how the perspective leads to testable predictions related to: (i) reduced variance in measures of responses to natural selection in the wild; (ii) multiple trait coevolution, including the evolution of sequences of traits and patterns of parallel evolution; and (iii) a positive association between niche construction and biodiversity. More generally, we submit that evolutionary biology would benefit from greater attention to the diverse properties of all sources of selection.


2020 ◽  
Vol 31 (8) ◽  
pp. 803-816
Author(s):  
Umberto di Porzio

AbstractThe environment increased complexity required more neural functions to develop in the hominin brains, and the hominins adapted to the complexity by developing a bigger brain with a greater interconnection between its parts. Thus, complex environments drove the growth of the brain. In about two million years during hominin evolution, the brain increased three folds in size, one of the largest and most complex amongst mammals, relative to body size. The size increase has led to anatomical reorganization and complex neuronal interactions in a relatively small skull. At birth, the human brain is only about 20% of its adult size. That facilitates the passage through the birth canal. Therefore, the human brain, especially cortex, develops postnatally in a rich stimulating environment with continuous brain wiring and rewiring and insertion of billions of new neurons. One of the consequence is that in the newborn brain, neuroplasticity is always turned “on” and it remains active throughout life, which gave humans the ability to adapt to complex and often hostile environments, integrate external experiences, solve problems, elaborate abstract ideas and innovative technologies, store a lot of information. Besides, hominins acquired unique abilities as music, language, and intense social cooperation. Overwhelming ecological, social, and cultural challenges have made the human brain so unique. From these events, as well as the molecular genetic changes that took place in those million years, under the pressure of natural selection, derive the distinctive cognitive abilities that have led us to complex social organizations and made our species successful.


EvoDevo ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alice Laciny

AbstractAs social insects, ants represent extremely interaction-rich biological systems shaped by tightly integrated social structures and constant mutual exchange with a multitude of internal and external environmental factors. Due to this high level of ecological interconnection, ant colonies can harbour a diverse array of parasites and pathogens, many of which are known to interfere with the delicate processes of ontogeny and caste differentiation and induce phenotypic changes in their hosts. Despite their often striking nature, parasite-induced changes to host development and morphology have hitherto been largely overlooked in the context of ecological evolutionary developmental biology (EcoEvoDevo). Parasitogenic morphologies in ants can, however, serve as “natural experiments” that may shed light on mechanisms and pathways relevant to host development, plasticity or robustness under environmental perturbations, colony-level effects and caste evolution. By assessing case studies of parasites causing morphological changes in their ant hosts, from the eighteenth century to current research, this review article presents a first overview of relevant host and parasite taxa. Hypotheses about the underlying developmental and evolutionary mechanisms, and open questions for further research are discussed. This will contribute towards highlighting the importance of parasites of social insects for both biological theory and empirical research and facilitate future interdisciplinary work at the interface of myrmecology, parasitology, and the EcoEvoDevo framework.


2018 ◽  
Vol 373 (1740) ◽  
pp. 20160508 ◽  
Author(s):  
Sarah Benson-Amram ◽  
Geoff Gilfillan ◽  
Karen McComb

Playback experiments have proved to be a useful tool to investigate the extent to which wild animals understand numerical concepts and the factors that play into their decisions to respond to different numbers of vocalizing conspecifics. In particular, playback experiments have broadened our understanding of the cognitive abilities of historically understudied species that are challenging to test in the traditional laboratory, such as members of the Order Carnivora. Additionally, playback experiments allow us to assess the importance of numerical information versus other ecologically important variables when animals are making adaptive decisions in their natural habitats. Here, we begin by reviewing what we know about quantity discrimination in carnivores from studies conducted in captivity. We then review a series of playback experiments conducted with wild social carnivores, including African lions, spotted hyenas and wolves, which demonstrate that these animals can assess the number of conspecifics calling and respond based on numerical advantage. We discuss how the wild studies complement those conducted in captivity and allow us to gain insights into why wild animals may not always respond based solely on differences in quantity. We then consider the key roles that individual discrimination and cross-modal recognition play in the ability of animals to assess the number of conspecifics vocalizing nearby. Finally, we explore new directions for future research in this area, highlighting in particular the need for further work on the cognitive basis of numerical assessment skills and experimental paradigms that can be effective in both captive and wild settings. This article is part of a discussion meeting issue ‘The origins of numerical abilities’.


Sign in / Sign up

Export Citation Format

Share Document