scholarly journals The evolution of cooperative breeding in birds: kinship, dispersal and life history

2009 ◽  
Vol 364 (1533) ◽  
pp. 3217-3227 ◽  
Author(s):  
Ben J. Hatchwell

The evolution of cooperation among animals has posed a major problem for evolutionary biologists, and despite decades of research into avian cooperative breeding systems, many questions about the evolution of their societies remain unresolved. A review of the kin structure of avian societies shows that a large majority live in kin-based groups. This is consistent with the proposed evolutionary routes to cooperative breeding via delayed dispersal leading to family formation, or limited dispersal leading to kin neighbourhoods. Hypotheses proposed to explain the evolution of cooperative breeding systems have focused on the role of population viscosity, induced by ecological/demographic constraints or benefits of philopatry, in generating this kin structure. However, comparative analyses have failed to generate robust predictions about the nature of those constraints, nor differentiated between the viscosity of social and non-social populations, except at a coarse level. I consider deficiencies in our understanding of how avian dispersal strategies differ between social and non-social species, and suggest that research has focused too narrowly on population viscosity and that a broader perspective that encompasses life history and demographic processes may provide fresh insights into the evolution of avian societies.

2012 ◽  
Vol 279 (1744) ◽  
pp. 4065-4070 ◽  
Author(s):  
Dieter Lukas ◽  
Tim Clutton-Brock

While the evolution of cooperative breeding systems (where non-breeding helpers participate in rearing young produced by dominant females) has been restricted to lineages with socially monogamous mating systems where coefficients of relatedness between group members are usually high, not all monogamous lineages have produced species with cooperative breeding systems, suggesting that other factors constrain the evolution of cooperative breeding. Previous studies have suggested that life-history parameters, including longevity, may constrain the evolution of cooperative breeding. Here, we show that transitions to cooperative breeding across the mammalian phylogeny have been restricted to lineages where females produce multiple offspring per birth. We find no support for effects of longevity or of other life-history parameters. We suggest that the evolution of cooperative breeding has been restricted to monogamous lineages where helpers have the potential to increase the reproductive output of breeders.


2019 ◽  
Author(s):  
Hugo Cayuela ◽  
Laurent Boualit ◽  
Martin Laporte ◽  
Jérôme G. Prunier ◽  
Françoise Preiss ◽  
...  

AbstractKin selection and dispersal play a critical role in the evolution of cooperative breeding systems. Limited dispersal dramatically increases relatedness in spatially structured populations (population viscosity), with the result that neighbours tend to be genealogical relatives. Yet the increase in neighbours’ performance through altruistic interaction may also result in habitat saturation and thus exacerbate local competition between kin. Our goal was to detect the footprint of kin selection and competition by examining the spatial structure of relatedness and by comparing non-effective and effective dispersal in a population of a lekking bird, Tetrao urogallus. For this purpose, we analysed capture–recapture and genetic data collected over a 6-year period on a spatially structured population of T. urogallus in France. Our findings revealed a strong spatial structure of relatedness in males. They also indicated that the population viscosity allowed male cooperation through two non-exclusive mechanisms. First, at their first lek attendance, males aggregate in a lek composed of relatives. Second, the distance corresponding to non-effective dispersal dramatically outweighed effective dispersal distance, which suggests that dispersers incur high post-settlement costs. These two mechanisms result in strong population genetic structuring in males. In females, our findings revealed a lower level of spatial structure of relatedness and genetic structure in respect to males. Additionally, non-effective dispersal and effective dispersal distances in females were highly similar, which suggests limited post-settlement costs. These results indicate that kin-dependent dispersal decisions and costs are factors driving the evolution of cooperative courtship and have a genetic footprint in wild populations.


2017 ◽  
Vol 4 (1) ◽  
pp. 160897 ◽  
Author(s):  
Dieter Lukas ◽  
Tim Clutton-Brock

Cooperative breeding systems, in which non-breeding individuals provide care for the offspring of dominant group members, occur in less than 1% of mammals and are associated with social monogamy and the production of multiple offspring per birth (polytocy). Here, we show that the distribution of alloparental care by non-breeding subordinates is associated with habitats where annual rainfall is low. A possible reason for this association is that the females of species found in arid environments are usually polytocous and this may have facilitated the evolution of alloparental care.


2019 ◽  
Vol 374 (1780) ◽  
pp. 20180067 ◽  
Author(s):  
Emily C. Lynch ◽  
Virpi Lummaa ◽  
Win Htut ◽  
Mirkka Lahdenperä

Preferential treatment of kin is widespread across social species and is considered a central prerequisite to the evolution of cooperation through kin selection. Though it is well known that, among most social mammals, females will remain within their natal group and often bias social behaviour towards female maternal kin, less is known about the fitness consequences of these relationships. We test the fitness benefits of living with maternal sisters, measured by age-specific female reproduction, using an unusually large database of a semi-captive Asian elephant ( Elephas maximus ) population. This study system is particularly valuable to an exploration of reproductive trends in a long-lived mammal, because it includes life-history data that span multiple generations, enabling a study of the effects of kinship across a female's lifespan. We find that living near a sister significantly increased the likelihood of annual reproduction among young female elephants, and this effect was strongest when living near a sister 0–5 years younger. Our results show that fitness benefits gained from relationships with kin are age-specific, establish the basis necessary for the formation and maintenance of close social relationships with female kin, and highlight the adaptive importance of matriliny in a long-lived mammal. This article is part of the theme issue ‘The evolution of female-biased kinship in humans and other mammals'.


1999 ◽  
Vol 47 (6) ◽  
pp. 633 ◽  
Author(s):  
David J. Green ◽  
Andrew Cockburn

The genus Acanthiza may be important in understanding the evolution of avian mating systems because while brown thornbills, Acanthiza pusilla, are thought to breed only in pairs, a recent phylogenetic analysis suggests that cooperative breeding is the ancestral trait within this genus. We provide a detailed account of the breeding biology of the brown thornbill, confirm that they breed exclusively in pairs, and compare their population demography with what is known for other members of the Pardalotidae. We found that brown thornbills produced small clutches (3 eggs) with a two-day laying interval, had a long incubation period (declining from 19 to 16 days through the season), and had a long breeding season (4.0 months) that allowed females to occasionally raise two successful broods. Brown thornbills, in our study, produced an average of 1.57 fledglings per pair and had relatively high annual survival rates (c. 63%). We found no evidence to suggest that the evolution of pair-breeding within the Pardalotidae is associated with a reduction in annual survival rates, a short breeding season with reduced productivity, or high levels of predation post-fledging. Since there also appear to be no ecological correlates with mating system in the Pardalotidae we suggest that examination of reproductive conflict between parents and young may shed light on the evolution of pairbreeding in this family.


2016 ◽  
Vol 371 (1687) ◽  
pp. 20150089 ◽  
Author(s):  
Andrés E. Quiñones ◽  
G. Sander van Doorn ◽  
Ido Pen ◽  
Franz J. Weissing ◽  
Michael Taborsky

Two alternative frameworks explain the evolution of cooperation in the face of conflicting interests. Conflicts can be alleviated by kinship, the alignment of interests by virtue of shared genes, or by negotiation strategies, allowing mutually beneficial trading of services or commodities. Although negotiation often occurs in kin-structured populations, the interplay of kin- and negotiation-based mechanisms in the evolution of cooperation remains an unresolved issue. Inspired by the biology of a cooperatively breeding fish, we developed an individual-based simulation model to study the evolution of negotiation-based cooperation in relation to different levels of genetic relatedness. We show that the evolution of negotiation strategies leads to an equilibrium where subordinates appease dominants by conditional cooperation, resulting in high levels of help and low levels of aggression. This negotiation-based equilibrium can be reached both in the absence of relatedness and in a kin-structured population. However, when relatedness is high, evolution often ends up in an alternative equilibrium where subordinates help their kin unconditionally. The level of help at this kin-selected equilibrium is considerably lower than at the negotiation-based equilibrium, and it corresponds to a level reached when responsiveness is prevented from evolving in the simulations. A mathematical invasion analysis reveals that, quite generally, the alignment of payoffs due to the relatedness of interaction partners tends to impede selection for harsh but effective punishment of defectors. Hence kin structure will often hamper rather than facilitate the evolution of productive cooperation.


Sign in / Sign up

Export Citation Format

Share Document