scholarly journals Life histories and the evolution of cooperative breeding in mammals

2012 ◽  
Vol 279 (1744) ◽  
pp. 4065-4070 ◽  
Author(s):  
Dieter Lukas ◽  
Tim Clutton-Brock

While the evolution of cooperative breeding systems (where non-breeding helpers participate in rearing young produced by dominant females) has been restricted to lineages with socially monogamous mating systems where coefficients of relatedness between group members are usually high, not all monogamous lineages have produced species with cooperative breeding systems, suggesting that other factors constrain the evolution of cooperative breeding. Previous studies have suggested that life-history parameters, including longevity, may constrain the evolution of cooperative breeding. Here, we show that transitions to cooperative breeding across the mammalian phylogeny have been restricted to lineages where females produce multiple offspring per birth. We find no support for effects of longevity or of other life-history parameters. We suggest that the evolution of cooperative breeding has been restricted to monogamous lineages where helpers have the potential to increase the reproductive output of breeders.

2012 ◽  
Vol 279 (1736) ◽  
pp. 2151-2156 ◽  
Author(s):  
Dieter Lukas ◽  
Tim Clutton-Brock

Comparative studies of social insects and birds show that the evolution of cooperative and eusocial breeding systems has been confined to species where females mate completely or almost exclusively with a single male, indicating that high levels of average kinship between group members are necessary for the evolution of reproductive altruism. In this paper, we show that in mammals, the evolution of cooperative breeding has been restricted to socially monogamous species which currently represent 5 per cent of all mammalian species. Since extra-pair paternity is relatively uncommon in socially monogamous and cooperatively breeding mammals, our analyses support the suggestion that high levels of average kinship between group members have played an important role in the evolution of cooperative breeding in non-human mammals, as well as in birds and insects.


2017 ◽  
Vol 4 (1) ◽  
pp. 160897 ◽  
Author(s):  
Dieter Lukas ◽  
Tim Clutton-Brock

Cooperative breeding systems, in which non-breeding individuals provide care for the offspring of dominant group members, occur in less than 1% of mammals and are associated with social monogamy and the production of multiple offspring per birth (polytocy). Here, we show that the distribution of alloparental care by non-breeding subordinates is associated with habitats where annual rainfall is low. A possible reason for this association is that the females of species found in arid environments are usually polytocous and this may have facilitated the evolution of alloparental care.


1999 ◽  
Vol 47 (6) ◽  
pp. 633 ◽  
Author(s):  
David J. Green ◽  
Andrew Cockburn

The genus Acanthiza may be important in understanding the evolution of avian mating systems because while brown thornbills, Acanthiza pusilla, are thought to breed only in pairs, a recent phylogenetic analysis suggests that cooperative breeding is the ancestral trait within this genus. We provide a detailed account of the breeding biology of the brown thornbill, confirm that they breed exclusively in pairs, and compare their population demography with what is known for other members of the Pardalotidae. We found that brown thornbills produced small clutches (3 eggs) with a two-day laying interval, had a long incubation period (declining from 19 to 16 days through the season), and had a long breeding season (4.0 months) that allowed females to occasionally raise two successful broods. Brown thornbills, in our study, produced an average of 1.57 fledglings per pair and had relatively high annual survival rates (c. 63%). We found no evidence to suggest that the evolution of pair-breeding within the Pardalotidae is associated with a reduction in annual survival rates, a short breeding season with reduced productivity, or high levels of predation post-fledging. Since there also appear to be no ecological correlates with mating system in the Pardalotidae we suggest that examination of reproductive conflict between parents and young may shed light on the evolution of pairbreeding in this family.


2000 ◽  
Vol 48 (1) ◽  
pp. 21 ◽  
Author(s):  
Hugh A. Ford ◽  
Steve Trémont

Most endemic Australian passerines that have been studied display long breeding seasons, multiple nesting attempts, small clutches, low annual productivity, high longevity and a high incidence of cooperative breeding. We compare the life histories of two large endemic honeyeaters (Meliphagidae) near Armidale, New South Wales. Red wattlebirds, Anthochaera carunculata, have a long breeding season, with many nesting attempts and clutches of two eggs, similar to other honeyeaters whose breeding biology has been studied. Noisy friarbirds, Philemon corniculatus, which are spring and summer visitors to the study area, have shorter breeding seasons, usually making one attempt and have a modal clutch size of three. Both species had incubation and nestling periods of about 16 days. Friarbirds apparently have a laying interval of 24 hours, the same as other honeyeaters, but unlike some other endemic passerines, which have laying intervals of 48 hours. Breeding success did not differ between the species, with young fledging from 32.7% of wattlebird nests and 40.9% of friarbird nests. The reproductive strategy of the noisy friarbird thus differs quantitatively from the apparent norm for other honeyeaters and many other Australian endemic passerines.


2018 ◽  
Vol 75 (3) ◽  
pp. 953-963 ◽  
Author(s):  
Sebastián A Pardo ◽  
Andrew B Cooper ◽  
John D Reynolds ◽  
Nicholas K Dulvy

Abstract Sensitivity to overfishing is often estimated using simple models that depend upon life history parameters, especially for species lacking detailed biological information. Yet, there has been little exploration of how uncertainty in life history parameters can influence demographic parameter estimates and therefore fisheries management options. We estimate the maximum intrinsic rate of population increase (rmax) for ten coastal carcharhiniform shark populations using an unstructured life history model that explicitly accounts for uncertainty in life history parameters. We evaluate how the two directly estimated parameters, age at maturity αmat and annual reproductive output b, most influenced rmax estimates. Uncertainty in age at maturity values was low, but resulted in moderate uncertainty in rmax estimates. The model was sensitive to uncertainty in annual reproductive output for the least fecund species with fewer than 5 female offspring per year, which is not unusual for large elasmobranchs, marine mammals, and seabirds. Managers and policy makers should be careful to restrict mortality on species with very low annual reproductive output <2 females per year. We recommend elasmobranch biologists to measure frequency distributions of litter sizes (rather than just a range) as well as improving estimates of natural mortality of data-poor elasmobranchs.


2009 ◽  
Vol 364 (1533) ◽  
pp. 3217-3227 ◽  
Author(s):  
Ben J. Hatchwell

The evolution of cooperation among animals has posed a major problem for evolutionary biologists, and despite decades of research into avian cooperative breeding systems, many questions about the evolution of their societies remain unresolved. A review of the kin structure of avian societies shows that a large majority live in kin-based groups. This is consistent with the proposed evolutionary routes to cooperative breeding via delayed dispersal leading to family formation, or limited dispersal leading to kin neighbourhoods. Hypotheses proposed to explain the evolution of cooperative breeding systems have focused on the role of population viscosity, induced by ecological/demographic constraints or benefits of philopatry, in generating this kin structure. However, comparative analyses have failed to generate robust predictions about the nature of those constraints, nor differentiated between the viscosity of social and non-social populations, except at a coarse level. I consider deficiencies in our understanding of how avian dispersal strategies differ between social and non-social species, and suggest that research has focused too narrowly on population viscosity and that a broader perspective that encompasses life history and demographic processes may provide fresh insights into the evolution of avian societies.


2014 ◽  
Vol 281 (1789) ◽  
pp. 20140184 ◽  
Author(s):  
Stefan Fischer ◽  
Markus Zöttl ◽  
Frank Groenewoud ◽  
Barbara Taborsky

In cooperative breeding systems, dominant breeders sometimes tolerate unrelated individuals even if they inflict costs on the dominants. According to the ‘pay-to-stay’ hypothesis, (i) subordinates can outweigh these costs by providing help and (ii) dominants should be able to enforce help by punishing subordinates that provide insufficient help. This requires that dominants can monitor helping and can recognize group members individually. In a field experiment, we tested whether cooperatively breeding cichlid Neolamprologus pulcher subordinates increase their help after a forced ‘idle’ period, how other group members respond to a previously idle helper, and how helper behaviour and group responses depend on group size. Previously idle helpers increased their submissiveness and received more aggression than control helpers, suggesting that punishment occurred to enforce help. Subordinates in small groups increased their help more than those in large groups, despite receiving less aggression. When subordinates were temporarily removed, dominants in small groups were more likely to evict returning subordinates. Our results suggest that only in small groups do helpers face a latent threat of punishment by breeders as predicted by the pay-to-stay hypothesis. In large groups, cognitive constraints may prevent breeders from tracking the behaviour of a large number of helpers.


The Condor ◽  
2006 ◽  
Vol 108 (3) ◽  
pp. 530-546 ◽  
Author(s):  
Joshua T. Ackerman ◽  
John M. Eadie ◽  
Thomas G. Moore

AbstractLife-history theory predicts that longer-lived, less fecund species should take fewer risks when exposed to predation than shorter-lived, more fecund species. We tested this prediction for seven species of dabbling ducks (Anas) by measuring the approach behavior (behavior of ducks when approaching potential landing sites) of 1099 duck flocks during 37 hunting trials and 491 flocks during 13 trials conducted immediately after the 1999–2000 waterfowl hunting season in California, USA. We also experimentally manipulated the attractiveness of the study site by using two decoy treatments: (1) traditional, stationary decoys only, and (2) traditional decoys in conjunction with a mechanical spinning-wing decoy. Approach behavior of ducks was strongly correlated with their life history. Minimum approach distance was negatively correlated with reproductive output during each decoy treatment and trial type. Similarly, the proportion of flocks taking risk (approaching landing sites to within 45 m) was positively correlated with reproductive output. We found similar patterns of approach behavior in relation to other life-history parameters (i.e., adult female body mass and annual adult female survival rate). Thus, species characterized by a slower life-history strategy (e.g., Northern Pintail [A. acuta]) were more risk-averse than species with a faster life-history strategy (e.g., Cinnamon Teal [A. cyanoptera]). Furthermore, although we were able to reduce risk-averseness using the spinning-wing decoy, we were unable to override the influence of life history on risk-taking behavior. Alternative explanations did not account for the observed correlation between approach behavior and life-history parameters. These results suggest that life history influences the risk-taking behavior of dabbling ducks and provide an explanation for the differential vulnerability of waterfowl to harvest.


2005 ◽  
Vol 1 (4) ◽  
pp. 450-453 ◽  
Author(s):  
J.A Addison ◽  
M.W Hart

Patterns of population genetic variation have frequently been understood as consequences of life history covariates such as dispersal ability and breeding systems (e.g. selfing). For example, marine invertebrates show enormous variation in life history traits that are correlated with the extent of gene flow between populations and the magnitude of differentiation among populations at neutral genetic markers ( F ST ). Here we document an unexpected correlation between marine invertebrate life histories and deviation from Hardy–Weinberg equilibrium (non-zero values of F IS , the inbreeding coefficient). F IS values were significantly higher in studies of species with free-spawned planktonic sperm than in studies of species that copulate or have some form of direct sperm transfer to females or benthic egg masses. This result was robust to several different analytical approaches. We note several mechanisms that might contribute to this pattern, and appeal for more studies and ideas that might help to explain our observations.


Sign in / Sign up

Export Citation Format

Share Document