scholarly journals Phenology, seasonal timing and circannual rhythms: towards a unified framework

2010 ◽  
Vol 365 (1555) ◽  
pp. 3113-3127 ◽  
Author(s):  
Marcel E. Visser ◽  
Samuel P. Caro ◽  
Kees van Oers ◽  
Sonja V. Schaper ◽  
Barbara Helm

Phenology refers to the periodic appearance of life-cycle events and currently receives abundant attention as the effects of global change on phenology are so apparent. Phenology as a discipline observes these events and relates their annual variation to variation in climate. But phenology is also studied in other disciplines, each with their own perspective. Evolutionary ecologists study variation in seasonal timing and its fitness consequences, whereas chronobiologists emphasize the periodic nature of life-cycle stages and their underlying timing programmes (e.g. circannual rhythms). The (neuro-) endocrine processes underlying these life-cycle events are studied by physiologists and need to be linked to genes that are explored by molecular geneticists. In order to fully understand variation in phenology, we need to integrate these different perspectives, in particular by combining evolutionary and mechanistic approaches. We use avian research to characterize different perspectives and to highlight integration that has already been achieved. Building on this work, we outline a route towards uniting the different disciplines in a single framework, which may be used to better understand and, more importantly, to forecast climate change impacts on phenology.

2019 ◽  
Vol 18 (2) ◽  
pp. 29 ◽  
Author(s):  
Mar Ortega-Reig ◽  
Marta García-Mollá ◽  
Carles Sanchis-Ibor ◽  
Manuel Pulido-Velázquez ◽  
Corentin Girard ◽  
...  

<p>This paper develops a participatory methodology to integrate farmer’s vision in the design of an adaptation strategy to global change in the Jucar River basin. It aims at answering three questions: How farmers perceive climate change impacts; which adaptation measures they consider; and how they assess these measures. Participatory workshops with different actors were held in two areas (La Ribera and La Mancha Oriental). This methodology has allowed identifying the local impacts and consequences of global change, and the difficulties of the adaptation processes to climate change scenarios.</p>


2018 ◽  
Vol 26 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Weiguo Liu ◽  
Zhen Yu ◽  
Xinfeng Xie ◽  
Klaus von Gadow ◽  
Changhui Peng

This study presents a critical analysis regarding the assumption of carbon neutrality in life cycle assessment (LCA) models that assess climate change impacts of bioenergy usage. We identified a complex of problems in the carbon neutrality assumption, especially regarding bioenergy derived from forest residues. In this study, we summarized several issues related to carbon neutral assumptions, with particular emphasis on possible carbon accounting errors at the product level. We analyzed errors in estimating emissions in the supply chain, direct and indirect emissions due to forest residue extraction, biogenic CO2 emission from biomass combustion for energy, and other effects related to forest residue extraction. Various modeling approaches are discussed in detail. We concluded that there is a need to correct accounting errors when estimating climate change impacts and proposed possible remedies. To accurately assess climate change impacts of bioenergy use, greater efforts are required to improve forest carbon cycle modeling, especially to identify and correct pitfalls associated with LCA accounting, forest residue extraction effects on forest fire risk and biodiversity. Uncertainties in accounting carbon emissions in LCA are also highlighted, and associated risks are discussed.


2017 ◽  
Vol 28 ◽  
pp. 270-281 ◽  
Author(s):  
Marie-Odile P. Fortier ◽  
Griffin W. Roberts ◽  
Susan M. Stagg-Williams ◽  
Belinda S.M. Sturm

2013 ◽  
Vol 280 (1765) ◽  
pp. 20131149 ◽  
Author(s):  
Lauren B. Buckley ◽  
Joshua J. Tewksbury ◽  
Curtis A. Deutsch

Whether movement will enable organisms to alleviate thermal stress is central to the biodiversity implications of climate change. We use the temperature-dependence of ectotherm performance to investigate the fitness consequences of movement. Movement to an optimal location within a 50 km radius will only offset the fitness impacts of climate change by 2100 in 5 per cent of locations globally. Random movement carries an 87 per cent risk of further fitness detriment. Mountainous regions with high temperature seasonality (i.e. temperate areas) not only offer the greatest benefit from optimal movement but also the most severe fitness consequences if an organism moves to the wrong location. Doubling dispersal capacity would provide modest benefit exclusively to directed dispersers in topographically diverse areas. The benefits of movement for escaping climate change are particularly limited in the tropics, where fitness impacts will be most severe. The potential of movement to lessen climate change impacts may have been overestimated.


Sign in / Sign up

Export Citation Format

Share Document