scholarly journals Social traditions and social learning in capuchin monkeys ( Cebus )

2011 ◽  
Vol 366 (1567) ◽  
pp. 988-996 ◽  
Author(s):  
Susan Perry

Capuchin monkeys (genus Cebus ) have evolutionarily converged with humans and chimpanzees in a number of ways, including large brain size, omnivory and extractive foraging, extensive cooperation and coalitionary behaviour and a reliance on social learning. Recent research has documented a richer repertoire of group-specific social conventions in the coalition-prone Cebus capucinus than in any other non-human primate species; these social rituals appear designed to test the strength of social bonds. Such diverse social conventions have not yet been noted in Cebus apella , despite extensive observation at multiple sites. The more robust and widely distributed C. apella is notable for the diversity of its tool-use repertoire, particularly in marginal habitats. Although C. capucinus does not often use tools, white-faced capuchins do specialize in foods requiring multi-step processing, and there are often multiple techniques used by different individuals within the same social group. Immatures preferentially observe foragers who are eating rare foods and hard-to-process foods. Young foragers, especially females, tend to adopt the same foraging techniques as their close associates.

2020 ◽  
pp. 174702182097072
Author(s):  
Cinzia Trapanese ◽  
Hélène Meunier ◽  
Shelly Masi

Foraging in seasonal environments can be cognitively demanding. Comparative studies have associated large brain size with a frugivorous diet. We investigated the ability of three semi-free-ranging primate species with different degrees of frugivory ( Ntrials: Macaca tonkeana = 419, Macaca fascicularis = 197, Sapajus apella = 346) in developing a mental representation of the spatio-temporal distribution of food using foraging experiments. Forty-two boxes were fixed on trees, and each week (“season”), some of them were filled with fruits which were either highly preferred, or less preferred. Spatial (geometrical panels) and temporal (peel skin of the available fruit) cues were present at each season to indicate where (food location), what (which food) was available, and when. To test the flexible use of the cues in primate foraging behaviour, we first removed the spatial and temporal cues one at a time, and then, we manipulated the “seasonal” order of the available fruit. We compared the foraging performances in the absence and the presence of the cues and during the usual and unusual seasonal order. The average proportion of baited boxes chosen by the subjects in presence of both cues was high (between 73% and 98%) for all species. The primates seemed to remember the spatio-temporal food availability (or used other cues) because no difference was found between trials with or without our spatial and temporal cues. When the usual seasonal pattern was changed, they flexibly adjusted the feeding choice by using the provided temporal cues. We discuss these results also in view of a possible experimental bias.


2017 ◽  
Vol 114 (30) ◽  
pp. 7908-7914 ◽  
Author(s):  
Sally E. Street ◽  
Ana F. Navarrete ◽  
Simon M. Reader ◽  
Kevin N. Laland

Explanations for primate brain expansion and the evolution of human cognition and culture remain contentious despite extensive research. While multiple comparative analyses have investigated variation in brain size across primate species, very few have addressed why primates vary in how much they use social learning. Here, we evaluate the hypothesis that the enhanced reliance on socially transmitted behavior observed in some primates has coevolved with enlarged brains, complex sociality, and extended lifespans. Using recently developed phylogenetic comparative methods we show that, across primate species, a measure of social learning proclivity increases with absolute and relative brain volume, longevity (specifically reproductive lifespan), and social group size, correcting for research effort. We also confirm relationships of absolute and relative brain volume with longevity (both juvenile period and reproductive lifespan) and social group size, although longevity is generally the stronger predictor. Relationships between social learning, brain volume, and longevity remain when controlling for maternal investment and are therefore not simply explained as a by-product of the generally slower life history expected for larger brained species. Our findings suggest that both brain expansion and high reliance on culturally transmitted behavior coevolved with sociality and extended lifespan in primates. This coevolution is consistent with the hypothesis that the evolution of large brains, sociality, and long lifespans has promoted reliance on culture, with reliance on culture in turn driving further increases in brain volume, cognitive abilities, and lifespans in some primate lineages.


2021 ◽  
pp. 1-12
Author(s):  
Carel P. van Schaik ◽  
Zegni Triki ◽  
Redouan Bshary ◽  
Sandra A. Heldstab

Both absolute and relative brain sizes vary greatly among and within the major vertebrate lineages. Scientists have long debated how larger brains in primates and hominins translate into greater cognitive performance, and in particular how to control for the relationship between the noncognitive functions of the brain and body size. One solution to this problem is to establish the slope of cognitive equivalence, i.e., the line connecting organisms with an identical bauplan but different body sizes. The original approach to estimate this slope through intraspecific regressions was abandoned after it became clear that it generated slopes that were too low by an unknown margin due to estimation error. Here, we revisit this method. We control for the error problem by focusing on highly dimorphic primate species with large sample sizes and fitting a line through the mean values for adult females and males. We obtain the best estimate for the slope of circa 0.27, a value much lower than those constructed using all mammal species and close to the value expected based on the genetic correlation between brain size and body size. We also find that the estimate of cognitive brain size based on cognitive equivalence fits empirical cognitive studies better than the encephalization quotient, which should therefore be avoided in future studies on primates and presumably mammals and birds in general. The use of residuals from the line of cognitive equivalence may change conclusions concerning the cognitive abilities of extant and extinct primate species, including hominins.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nashaiman Pervaiz ◽  
Hongen Kang ◽  
Yiming Bao ◽  
Amir Ali Abbasi

Abstract Background There has been a rapid increase in the brain size relative to body size during mammalian evolutionary history. In particular, the enlarged and globular brain is the most distinctive anatomical feature of modern humans that set us apart from other extinct and extant primate species. Genetic basis of large brain size in modern humans has largely remained enigmatic. Genes associated with the pathological reduction of brain size (primary microcephaly-MCPH) have the characteristics and functions to be considered ideal candidates to unravel the genetic basis of evolutionary enlargement of human brain size. For instance, the brain size of microcephaly patients is similar to the brain size of Pan troglodyte and the very early hominids like the Sahelanthropus tchadensis and Australopithecus afarensis. Results The present study investigates the molecular evolutionary history of subset of autosomal recessive primary microcephaly (MCPH) genes; CEP135, ZNF335, PHC1, SASS6, CDK6, MFSD2A, CIT, and KIF14 across 48 mammalian species. Codon based substitutions site analysis indicated that ZNF335, SASS6, CIT, and KIF14 have experienced positive selection in eutherian evolutionary history. Estimation of divergent selection pressure revealed that almost all of the MCPH genes analyzed in the present study have maintained their functions throughout the history of placental mammals. Contrary to our expectations, human-specific adoptive evolution was not detected for any of the MCPH genes analyzed in the present study. Conclusion Based on these data it can be inferred that protein-coding sequence of MCPH genes might not be the sole determinant of increase in relative brain size during primate evolutionary history.


Mammalia ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ying Jiang ◽  
Jia Yu Wang ◽  
Xiao Fu Huang ◽  
Chun Lan Mai ◽  
Wen Bo Liao

Abstract Brain size exhibits significant changes within and between species. Evolution of large brains can be explained by the need to improve cognitive ability for processing more information in changing environments. However, brains are among the most energetically expensive organs. Enlarged brains can impose energetic demands that limit brain size evolution. The expensive tissue hypothesis (ETH) states that a decrease in the size of another expensive tissue, such as the gut, should compensate for the cost of a large brain. We studied the interplay between energetic limitations and brain size evolution in small mammals using phylogenetically generalized least squares (PGLS) regression analysis. Brain mass was not correlated with the length of the digestive tract in 37 species of small mammals after correcting for phylogenetic relationships and body size effects. We further found that the evolution of a large brain was not accompanied by a decrease in male reproductive investments into testes mass and in female reproductive investment into offspring number. The evolution of brain size in small mammals is inconsistent with the prediction of the ETH.


2015 ◽  
Vol 282 (1818) ◽  
pp. 20151535 ◽  
Author(s):  
Kimberley A. Phillips ◽  
Cheryl D. Stimpson ◽  
Jeroen B. Smaers ◽  
Mary Ann Raghanti ◽  
Bob Jacobs ◽  
...  

Interhemispheric communication may be constrained as brain size increases because of transmission delays in action potentials over the length of axons. Although one might expect larger brains to have progressively thicker axons to compensate, spatial packing is a limiting factor. Axon size distributions within the primate corpus callosum (CC) may provide insights into how these demands affect conduction velocity. We used electron microscopy to explore phylogenetic variation in myelinated axon density and diameter of the CC from 14 different anthropoid primate species, including humans. The majority of axons were less than 1 µm in diameter across all species, indicating that conduction velocity for most interhemispheric communication is relatively constant regardless of brain size. The largest axons within the upper 95th percentile scaled with a progressively higher exponent than the median axons towards the posterior region of the CC. While brain mass among the primates in our analysis varied by 97-fold, estimates of the fastest cross-brain conduction times, as conveyed by axons at the 95th percentile, varied within a relatively narrow range between 3 and 9 ms across species, whereas cross-brain conduction times for the median axon diameters differed more substantially between 11 and 38 ms. Nonetheless, for both size classes of axons, an increase in diameter does not entirely compensate for the delay in interhemispheric transmission time that accompanies larger brain size. Such biophysical constraints on the processing speed of axons conveyed by the CC may play an important role in the evolution of hemispheric asymmetry.


Sign in / Sign up

Export Citation Format

Share Document