encephalization quotient
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 10)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
pp. 1-12
Author(s):  
Carel P. van Schaik ◽  
Zegni Triki ◽  
Redouan Bshary ◽  
Sandra A. Heldstab

Both absolute and relative brain sizes vary greatly among and within the major vertebrate lineages. Scientists have long debated how larger brains in primates and hominins translate into greater cognitive performance, and in particular how to control for the relationship between the noncognitive functions of the brain and body size. One solution to this problem is to establish the slope of cognitive equivalence, i.e., the line connecting organisms with an identical bauplan but different body sizes. The original approach to estimate this slope through intraspecific regressions was abandoned after it became clear that it generated slopes that were too low by an unknown margin due to estimation error. Here, we revisit this method. We control for the error problem by focusing on highly dimorphic primate species with large sample sizes and fitting a line through the mean values for adult females and males. We obtain the best estimate for the slope of circa 0.27, a value much lower than those constructed using all mammal species and close to the value expected based on the genetic correlation between brain size and body size. We also find that the estimate of cognitive brain size based on cognitive equivalence fits empirical cognitive studies better than the encephalization quotient, which should therefore be avoided in future studies on primates and presumably mammals and birds in general. The use of residuals from the line of cognitive equivalence may change conclusions concerning the cognitive abilities of extant and extinct primate species, including hominins.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Saganuwan Alhaji Saganuwan

Abstract Objective Dogs are a breed of animals that play important roles in security service, companionship, hunting, guard, work and models of research for application in humans. Intelligence is the key factor to success in life, most especially for dogs that are used for security purposes at the airports, seaports, public places, houses, schools and farms. However, it has been reported that there is correlation between intelligence, body weight, height and craniometry in human. In view of this, literatures were searched on body weight, height and body surface areas of ten dogs with intent to determining their comparative level of intelligence using encephalization quotient. Results Findings revealed that dogs have relationship of brain allometry with human as proven by encephalization quotient $$\left( {{\text{EQ}}} \right)\, = \,{\text{Brain Mass}}/0.{14}\, \times \,{\text{Body weight}}^{{0.{528}}} ,{\text{ Brain Mass}}/0.{12}\, \times \,{\text{Body Weight}}^{{0.{66}}}$$ EQ = Brain Mass / 0.14 × Body weight 0.528 , Brain Mass / 0.12 × Body Weight 0.66 and Brain Mass (E)  =  kpβ, where p is the body weight; k  =  0.14 and β = 0.528, respectively. Saganuwa’s formula yielded better results as compared with the other formulas. Dogs with body surface area (BSA), weight and height similar to that of human are the most intelligent. Doberman pinscher is the most intelligent followed by German shepherd, Labrador retriever, Golden retriever, respectively.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mirjam Kalusa ◽  
Maren D. Heinrich ◽  
Christine Sauerland ◽  
Markus Morawski ◽  
Simone A. Fietz

Mammals are born on a precocial–altricial continuum. Altricial species produce helpless neonates with closed distant organs incapable of locomotion, whereas precocial species give birth to well-developed young that possess sophisticated sensory and locomotor capabilities. Previous studies suggest that distinct patterns of cortex development differ between precocial and altricial species. This study compares patterns of neocortex neurogenesis and maturation in the precocial guinea pig and altricial dwarf rabbit, both belonging to the taxon of Glires. We show that the principal order of neurodevelopmental events is preserved in the neocortex of both species. Moreover, we show that neurogenesis starts at a later postconceptional day and takes longer in absolute gestational days in the precocial than the altricial neocortex. Intriguingly, our data indicate that the dwarf rabbit neocortex contains a higher abundance of highly proliferative basal progenitors than the guinea pig, which might underlie its higher encephalization quotient, demonstrating that the amount of neuron production is determined by complex regulation of multiple factors. Furthermore, we show that the guinea pig neocortex exhibits a higher maturation status at birth, thus providing evidence for the notions that precocial species might have acquired the morphological machinery required to attain their high functional state at birth and that brain expansion in the precocial newborn is mainly due to prenatally initiating processes of gliogenesis and neuron differentiation instead of increased neurogenesis. Together, this study reveals important insights into the timing and cellular differences that regulate mammalian brain growth and maturation and provides a better understanding of the evolution of mammalian altriciality and presociality.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 461
Author(s):  
Thomas Carle

Brain size fascinates society as well as researchers since it is a measure often associated with intelligence and was used to define species with high “intellectual capabilities”. In general, brain size is correlated with body size. However, there are disparities in terms of relative brain size between species that may be explained by several factors such as the complexity of social behaviour, the ‘social brain hypothesis’, or learning and memory capabilities. These disparities are used to classify species according to an ‘encephalization quotient’. However, environment also has an important role on the development and evolution of brain size. In this review, I summarise the recent studies looking at the effects of environment on brain size in insects, and introduce the idea that the role of environment might be mediated through the relationship between olfaction and vision. I also discussed this idea with studies that contradict this way of thinking.


2021 ◽  
Vol 8 (4) ◽  
Author(s):  
Alvaro L. Caicoya ◽  
Montserrat Colell ◽  
Conrad Ensenyat ◽  
Federica Amici

The ability to solve novel problems is crucial for individual fitness. However, studies on problem solving are usually done on few taxa, with species with low encephalization quotient being rarely tested. Here, we aimed to study problem solving in a non-domesticated ungulate species, European bison, with two experimental tasks. In the first task, five individuals were presented with a hanging barrel filled with food, which could either be directly accessed (control condition) or which could only be reached by pushing a tree stump in the enclosure below it and stepping on it (experimental condition). In the second task, five individuals were repeatedly fed by an experimenter using a novel bucket to retrieve food from a bag. Then, three identical buckets were placed in the enclosure, while the experimenter waited outside with the bag without feeding the bison, either with a bucket (control condition) or without it (experimental condition). In the first task, no bison moved the stump behind the barrel and/or stepped on it to reach the food. In the second task, two individuals solved the task by pushing the bucket within the experimenter's reach, twice in the experimental and twice in the control condition. We suggest that bison showed a limited ability to solve novel problems, and discuss the implications for their understanding of the functional aspects of the tasks.


2021 ◽  
Author(s):  
Saganuwan Alhaji Saganuwan

Abstract ObjectiveDogs are a breed of animals that play important roles, ranging from security passing through companionship to models of research for application in humans. Intelligence is the key factor to success in life, most especially for dogs that are used for security purposes at the airports, seaports, public places, houses, schools and farms. However, it has been reported that there is correlation between intelligence, body weight, height and craniometry in human. In view of this, literatures on body weight, height and body surface areas of ten dogs were assessed with a view to determining their comparative level of intelligence.ResultsFindings revealed that dogs share brain common allometric relationships with human as shown by Encephalization Quotient (EQ)= Brain Mass/0.14 x Body weight0.528 as compared with Brain Mass /0.12 x Body Weight0.66 and Brain Mass (E)=kpβ, where p is the body weight,k=0.14 and β=0.528 which yielded better results as compared with the other formulas. Dogs with BSA, weight and height similar to that of human are the most intelligent. Doberman Pinscher is the most intelligent followed by German Shepherd, Labrador Retriever, Golden Retriever, respectively.


Author(s):  
Mateo Peñaherrera Aguirre ◽  
Heitor BarcellosFerreira Fernandes ◽  
Michael A Woodley of Menie

Author(s):  
Thomas Boraud

This chapter assesses what the development of the cortex brings to the behavioural capacity of vertebrates, culminating with the theory of mind in humans. Two behavioural characteristics, related to each other, distinguish mammals from other vertebrates. The first is a period of dependence of infant mammals that can last several years. The second is play. Although the function of this activity is still debated, it is certain that it has a central role in the learning of foraging and social behaviour. Another property that is almost exclusive to mammals is the ability to recognize oneself. These specific behavioural features are correlated with a general increase in the encephalization quotient and also the ratio between the size of the telencephalon and the rest of the brain. This chapter then goes on to look at the unique capacities of humans, including language, the ability to anticipate, and consciousness.


2020 ◽  
Vol 287 (1929) ◽  
pp. 20200665
Author(s):  
Sergi López-Torres ◽  
Ornella C. Bertrand ◽  
Madlen M. Lang ◽  
Mary T. Silcox ◽  
Łucja Fostowicz-Frelik

Early lagomorphs are central to our understanding of how the brain evolved in Glires (rodents, lagomorphs and their kin) from basal members of Euarchontoglires (Glires + Euarchonta, the latter grouping primates, treeshrews, and colugos). Here, we report the first virtual endocast of the fossil lagomorph Megalagus turgidus , from the Orella Member of the Brule Formation, early Oligocene, Nebraska, USA. The specimen represents one of the oldest nearly complete lagomorph skulls known. Primitive aspects of the endocranial morphology in Megalagus include large olfactory bulbs, exposure of the midbrain, a small neocortex and a relatively low encephalization quotient. Overall, this suggests a brain morphology closer to that of other basal members of Euarchontoglires (e.g. plesiadapiforms and ischyromyid rodents) than to that of living lagomorphs. However, the well-developed petrosal lobules in Megalagus , comparable to the condition in modern lagomorphs, suggest early specialization in that order for the stabilization of eye movements necessary for accurate visual tracking. Our study sheds new light on the reconstructed morphology of the ancestral brain in Euarchontoglires and fills a critical gap in the understanding of palaeoneuroanatomy of this major group of placental mammals.


Life ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 76
Author(s):  
Dirk Schulze-Makuch

Naked mole-rats are eusocial, hairless mammals that are uniquely adapted to their harsh, low-oxygen subsurface habitat. Although their encephalization quotient, a controversial marker of intelligence, is low, they exhibit many features considered tell-tale signs of highly intelligent species on our planet including longevity, plasticity, social cohesion and interaction, rudimentary language, sustainable farming abilities, and maintaining sanitary conditions in their self-built complex housing structures. It is difficult to envision how naked mole-rats would reach even higher levels of intelligence in their natural sensory-challenged habitat, but such an evolutionary path cannot be excluded if they would expand their range onto the earth’s surface.


Sign in / Sign up

Export Citation Format

Share Document