scholarly journals Muscle function in avian flight: achieving power and control

2011 ◽  
Vol 366 (1570) ◽  
pp. 1496-1506 ◽  
Author(s):  
Andrew A. Biewener

Flapping flight places strenuous requirements on the physiological performance of an animal. Bird flight muscles, particularly at smaller body sizes, generally contract at high frequencies and do substantial work in order to produce the aerodynamic power needed to support the animal's weight in the air and to overcome drag. This is in contrast to terrestrial locomotion, which offers mechanisms for minimizing energy losses associated with body movement combined with elastic energy savings to reduce the skeletal muscles' work requirements. Muscles also produce substantial power during swimming, but this is mainly to overcome body drag rather than to support the animal's weight. Here, I review the function and architecture of key flight muscles related to how these muscles contribute to producing the power required for flapping flight, how the muscles are recruited to control wing motion and how they are used in manoeuvring. An emergent property of the primary flight muscles, consistent with their need to produce considerable work by moving the wings through large excursions during each wing stroke, is that the pectoralis and supracoracoideus muscles shorten over a large fraction of their resting fibre length (33–42%). Both muscles are activated while being lengthened or undergoing nearly isometric force development, enhancing the work they perform during subsequent shortening. Two smaller muscles, the triceps and biceps, operate over a smaller range of contractile strains (12–23%), reflecting their role in controlling wing shape through elbow flexion and extension. Remarkably, pigeons adjust their wing stroke plane mainly via changes in whole-body pitch during take-off and landing, relative to level flight, allowing their wing muscles to operate with little change in activation timing, strain magnitude and pattern.

Author(s):  
Waldez Gomes ◽  
Vishnu Radhakrishnan ◽  
Luigi Penco ◽  
Valerio Modugno ◽  
Jean-Baptiste Mouret ◽  
...  

2004 ◽  
Vol 91 (4) ◽  
pp. 1524-1535 ◽  
Author(s):  
Grégoire Courtine ◽  
Marco Schieppati

We tested the hypothesis that common principles govern the production of the locomotor patterns for both straight-ahead and curved walking. Whole body movement recordings showed that continuous curved walking implies substantial, limb-specific changes in numerous gait descriptors. Principal component analysis (PCA) was used to uncover the spatiotemporal structure of coordination among lower limb segments. PCA revealed that the same kinematic law accounted for the coordination among lower limb segments during both straight-ahead and curved walking, in both the frontal and sagittal planes: turn-related changes in the complex behavior of the inner and outer limbs were captured in limb-specific adaptive tuning of coordination patterns. PCA was also performed on a data set including all elevation angles of limb segments and trunk, thus encompassing 13 degrees of freedom. The results showed that both straight-ahead and curved walking were low dimensional, given that 3 principal components accounted for more than 90% of data variance. Furthermore, the time course of the principal components was unchanged by curved walking, thereby indicating invariant coordination patterns among all body segments during straight-ahead and curved walking. Nevertheless, limb- and turn-dependent tuning of the coordination patterns encoded the adaptations of the limb kinematics to the actual direction of the walking body. Absence of vision had no significant effect on the intersegmental coordination during either straight-ahead or curved walking. Our findings indicate that kinematic laws, probably emerging from the interaction of spinal neural networks and mechanical oscillators, subserve the production of both straight-ahead and curved walking. During locomotion, the descending command tunes basic spinal networks so as to produce the changes in amplitude and phase relationships of the spinal output, sufficient to achieve the body turn.


1963 ◽  
Vol 40 (1) ◽  
pp. 23-56 ◽  
Author(s):  
RICHARD BAINBRIDGE

1. Observations made on bream, goldfish and dace swimming in the ‘Fish Wheel’ apparatus are described. These include: 2. An account of the complex changes in curvature of the caudal fin during different phases of the normal locomotory cycle. Measurements of this curvature and of the angles of attack associated with it are given. 3. An account of changes in area of the caudal fin during the cycle of lateral oscillation. Detailed measurements of these changes, which may involve a 30 % increase in height or a 20 % increase in area, are given. 4. An account of the varying speed of transverse movement of the caudal fin under various conditions and the relationship of this to the changes in area and amount of bending. Details of the way this transverse speed may be asymmetrically distributed relative to the axis of progression of the fish are given. 5. An account of the extent of the lateral propulsive movements in other parts of the body. These are markedly different in the different species studied. Measurements of the wave length of this movement and of the rate of progression of the wave down the body are given. 6. It is concluded that the fish has active control over the speed, the amount of bending and the area of the caudal fin during transverse movement. 7. The bending of the fin and its changes in area are considered to be directed to the end of smoothing out and making more uniform what would otherwise be an intermittent thrust from the oscillating tail region. 8. Some assessment is made of the proportion of the total thrust contributed by the caudal fin. This is found to vary considerably, according to the form of the lateral propulsive movements of the whole body, from a value of 45% for the bream to 84% for the dace.


PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0134350 ◽  
Author(s):  
Mike van Diest ◽  
Jan Stegenga ◽  
Heinrich J. Wörtche ◽  
Jos B. T. M Roerdink ◽  
Gijsbertus J. Verkerke ◽  
...  

2021 ◽  
Author(s):  
Rebecca Anne Smith ◽  
Emily S. Cross

The ability to exchange affective cues with others plays a key role in our ability to create and maintain meaningful social relationships. We express our emotions through a variety of socially salient cues, including facial expressions, the voice, and body movement. While significant advances have been made in our understanding of verbal and facial communication, to date, understanding of the role played by human body movement in our social interactions remains incomplete. To this end, here we describe the creation and validation of a new set of emotionally expressive whole-body dance movement stimuli, named the Motion Capture Norming (McNorm) Library, which was designed to reconcile a number of limitations associated with previous movement stimuli. This library comprises a series of point-light representations of a dancer’s movements, which were performed to communicate neutrality, happiness, sadness, anger, and fear to observers. Based on results from two validation experiments, participants could reliably discriminate the intended emotion to clips in this stimulus set, with accuracy rates up to 60% (chance = 20%). We further explored the impact of dance experience and trait empathy on emotion recognition and found that neither significantly impacted emotion discrimination. As all materials for presenting and analysing this movement library are openly available, we hope this resource will aid other researchers in further exploration of affective communication expressed by human bodily movement.


2021 ◽  
pp. 63-74
Author(s):  
Cezary Biele

2020 ◽  
Vol 89 ◽  
pp. 102537
Author(s):  
Julie Renberg ◽  
Øystein Nordrum Wiggen ◽  
Juha Oksa ◽  
Kristine Blomvik Dyb ◽  
Randi Eidsmo Reinertsen ◽  
...  

2009 ◽  
Vol 36 (2) ◽  
pp. 103-114 ◽  
Author(s):  
Yoshifumi Tanaka ◽  
Kensuke Urimoto ◽  
Takayuki Murayama ◽  
Hiroshi Sekiya

Sign in / Sign up

Export Citation Format

Share Document