scholarly journals Phylogenetic diversity as a window into the evolutionary and biogeographic histories of present-day richness gradients for mammals

2011 ◽  
Vol 366 (1576) ◽  
pp. 2414-2425 ◽  
Author(s):  
T. Jonathan Davies ◽  
Lauren B. Buckley

Phylogenetic diversity (PD) captures the shared ancestry of species, and is increasingly being recognized as a valuable conservation currency. Regionally, PD frequently covaries closely with species richness; however, variation in speciation and extinction rates and/or the biogeographic history of lineages can result in significant deviation. Locally, these differences may be pronounced. Rapid recent speciation or high temporal turnover of lineages can result in low PD but high richness. In contrast, rare dispersal events, for example, between biomes, can elevate PD but have only small impact on richness. To date, environmental predictors of species richness have been well studied but global models explaining variation in PD are lacking. Here, we contrast the global distribution of PD versus species richness for terrestrial mammals. We show that an environmental model of lineage diversification can predict well the discrepancy in the distribution of these two variables in some places, for example, South America and Africa but not others, such as Southeast Asia. When we have information on multiple diversity indices, conservation efforts directed towards maximizing one currency or another (e.g. species richness versus PD) should also consider the underlying processes that have shaped their distributions.

2020 ◽  
Vol 287 (1928) ◽  
pp. 20200480 ◽  
Author(s):  
Rodolpho S. T. Menezes ◽  
Michael W. Lloyd ◽  
Seán G. Brady

The Neotropical realm harbours unparalleled species richness and hence has challenged biologists to explain the cause of its high biotic diversity. Empirical studies to shed light on the processes underlying biological diversification in the Neotropics are focused mainly on vertebrates and plants, with little attention to the hyperdiverse insect fauna. Here, we use phylogenomic data from ultraconserved element (UCE) loci to reconstruct for the first time the evolutionary history of Neotropical swarm-founding social wasps (Hymenoptera, Vespidae, Epiponini). Using maximum likelihood, Bayesian, and species tree approaches we recovered a highly resolved phylogeny for epiponine wasps. Additionally, we estimated divergence dates, diversification rates, and the biogeographic history for these insects in order to test whether the group followed a ‘museum’ (speciation events occurred gradually over many millions of years) or ‘cradle’ (lineages evolved rapidly over a short time period) model of diversification. The origin of many genera and all sampled extant Epiponini species occurred during the Miocene and Plio-Pleistocene. Moreover, we detected no major shifts in the estimated diversification rate during the evolutionary history of Epiponini, suggesting a relatively gradual accumulation of lineages with low extinction rates. Several lines of evidence suggest that the Amazonian region played a major role in the evolution of Epiponini wasps. This spatio-temporal diversification pattern, most likely concurrent with climatic and landscape changes in the Neotropics during the Miocene and Pliocene, establishes the Amazonian region as the major source of Neotropical swarm-founding social wasp diversity.


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e64018 ◽  
Author(s):  
Jiří Šmíd ◽  
Salvador Carranza ◽  
Lukáš Kratochvíl ◽  
Václav Gvoždík ◽  
Abdul Karim Nasher ◽  
...  

2007 ◽  
Vol 16 (2) ◽  
pp. 220-233 ◽  
Author(s):  
Richard G. Davies ◽  
C. David L. Orme ◽  
Andrea J. Webster ◽  
Kate E. Jones ◽  
Tim M. Blackburn ◽  
...  

Author(s):  
Jeffrey L Weinell ◽  
Anthony J Barley ◽  
Cameron D Siler ◽  
Nikolai L Orlov ◽  
Natalia B Ananjeva ◽  
...  

Abstract The genus Boiga includes 35, primarily arboreal snake species distributed from the Middle East to Australia and many islands in the western Pacific, with particularly high species diversity in South-East Asia. Despite including the iconic mangrove snakes (Boiga dendrophila complex) and the brown tree snake (Boiga irregularis; infamous for avian extinctions on small islands of the Pacific), species-level phylogenetic relationships and the biogeographic history of this ecologically and morphologically distinct clade are poorly understood. In this study, we sequenced mitochondrial and nuclear DNA for 24 Boiga species and used these data to estimate a robust phylogenetic inference, in order to (1) test the hypothesis that Boiga is monophyletic, (2) evaluate the validity of current species-level taxonomy and (3) examine whether geographic range evolution in Boiga is consistent with expectations concerning dispersal and colonization of vertebrates between continents and islands. Our results support the prevailing view that most dispersal events are downstream – from continents to oceanic islands – but we also identify a role for upstream dispersal from oceanic islands to continents. Additionally, the novel phylogeny of Boiga presented here is informative for updating species-level taxonomy within the genus.


Paleobiology ◽  
1993 ◽  
Vol 19 (2) ◽  
pp. 216-234 ◽  
Author(s):  
Richard C. Hulbert

The 18 m.y. history of the subfamily Equinae (exclusive of Archaeohippus and “Parahippus”) in North America consisted of a 3-m.y. radiation phase, a 9-m.y. steady-state diversity phase, and a 6-m.y. reduction phase. During the steady-state phase, species richness varied between 14 and 20, with two maxima at about 13.5 and 6.5 Ma. Species richness of the tribes Hipparionini and Equini was about equal through the middle Miocene, but hipparionines consistently had more species in the late Miocene and early Pliocene. Overall mean species duration was 3.2 m.y. (n = 50), or an average extinction rate of 0.31 m.y.-1 During the radiation phase, speciation rates were very high (0.5 to 1.4 m.y.-1), while extinction rates were low (<0.10 m.y.-1). Speciation and extinction rates both averaged about 0.15 m.y.-1 during the steady-state phase, with extinction rates having more variation. Extinction rates increased fourfold during the reduction phase, while speciation rates declined slightly. Late Hemphillian extinctions affected both tribes severely, not just the three-toed hipparionines, and were correlated with global climatic change.


2007 ◽  
Vol 274 (1612) ◽  
pp. 919-928 ◽  
Author(s):  
John J Wiens ◽  
Gabriela Parra-Olea ◽  
Mario García-París ◽  
David B Wake

Elevational variation in species richness is ubiquitous and important for conservation, but remains poorly explained. Numerous studies have documented higher species richness at mid-elevations, but none have addressed the underlying evolutionary and biogeographic processes that ultimately explain this pattern (i.e. speciation, extinction and dispersal). Here, we address the evolutionary causes of the mid-elevational diversity hump in the most species-rich clade of salamanders, the tropical bolitoglossine plethodontids. We present a new phylogeny for the group based on DNA sequences from all 13 genera and 137 species. Using this phylogeny, we find no relationship between rates of diversification of clades and their elevational distribution, and no evidence for a rapid ‘species pump’ in tropical montane regions. Instead, we find a strong relationship between the number of species in each elevational zone and the estimated time when each elevational band was first colonized. Mid-elevation habitats were colonized early in the phylogenetic history of bolitoglossines, and given similar rates of diversification across elevations, more species have accumulated in the elevational zones that were inhabited the longest. This pattern may be widespread and suggests that mid-elevation habitats may not only harbour more species, but may also contain more phylogenetic diversity than other habitats within a region.


2018 ◽  
Vol 92 (5) ◽  
pp. 804-837 ◽  
Author(s):  
Jonathan R. Hendricks

AbstractExtant members of the neogastropod family Conidae (cone snails) are renowned for their often dazzling shell coloration patterns and venomous feeding habits. Many cone snail species have also been described from the fossil record, but to date have been little used to understand the evolutionary history of extant clades. The cone snail fauna of the Miocene Gatun Formation of Colón Province, Panama is especially important for understanding the temporal and biogeographic history of tropical American Conidae. Intensive, focused collecting from an exposure of the lower Gatun Formation (deposited ca. 11–10 Ma) resulted in the discovery of nearly 900 specimens of Conidae. Remarkably, many of these well-preserved specimens exhibit revealed coloration patterns when exposed to ultraviolet light. The fluorescing coloration patterns were used in conjunction with other features of shell morphology to differentiate species and, in most cases, evaluate their potential relationships to members of the extant tropical American fauna. Nine species are fully described from this locality, one of which is recognized as new:Conus(Stephanoconus)woodringin. sp. At least one, and perhaps more, additional Conidae species are also present at the study locality. The diversity of this Conidae fauna is considered moderate relative to other recently analyzed tropical American fossil assemblages. The phylogenetic diversity of the assemblage, however, is noteworthy: six of the ten species can be confidently assigned to six different clades of extant Conidae, providing potentially useful calibration points for future phylogenetic studies.http://zoobank.org/8fe00c31-8f3f-4514-85af-29068e468cd3


Crustaceana ◽  
2014 ◽  
Vol 87 (8-9) ◽  
pp. 923-951 ◽  
Author(s):  
Alexandre Mestre ◽  
Juan S. Monrós ◽  
Francesc Mesquita-Joanes

The creation of biodiversity datasets freely available for the scientific community is a valuable task to stimulate global research on biodiversity. Among others, the Global Biodiversity Information Facility (GBIF) is a remarkable resource providing free online access to biodiversity data on many diverse taxonomic groups (including Ostracoda) from both terrestrial and marine ecosystems. More specific databases for Ostracoda georeferenced data have been built (e.g., NACODe and OMEGA), some with freely available data. However, the Entocytheridae, a family of ostracods living commensal on other crustaceans, with 220 living species, representing the third non-marine ostracod family in number of species, has been remarkably under-represented in the currently available biodiversity databases. To cover this gap, we present here a free-access world database of Entocytheridae published in GBIF and review the current knowledge of the group by updating a bibliographic and species checklists of the Entocytheridae. We also analyse the host specificity of the group and the latitudinal species richness pattern in North and Central America (including 186 spp.). The current database includes 3509 georeferenced records from 220 species, in contrast to just 44 entocytherid georeferenced records previously published in GBIF. In addition, the updated species list accounts for 43 species and 2 genera that were not included in the previous compendium on Entocytheridae published by Hart & Hart in 1974, so as 40 species not included in the 2013 Checklist provided by the Catalogue of Life. We show that the specialisation in one unique host species is not the rule in Entocytheridae, and evidence an unusual latitudinal pattern of species richness in North and Central American entocytherids, most probably related to the biogeographic history of their hosts.


2014 ◽  
Vol 281 (1784) ◽  
pp. 20140473 ◽  
Author(s):  
Jonathan Rolland ◽  
Frédéric Jiguet ◽  
Knud Andreas Jønsson ◽  
Fabien L. Condamine ◽  
Hélène Morlon

How seasonal migration originated and impacted diversification in birds remains largely unknown. Although migratory behaviour is likely to affect bird diversification, previous studies have not detected any effect. Here, we infer ancestral migratory behaviour and the effect of seasonal migration on speciation and extinction dynamics using a complete bird tree of life. Our analyses infer that sedentary behaviour is ancestral, and that migratory behaviour evolved independently multiple times during the evolutionary history of birds. Speciation of a sedentary species into two sedentary daughter species is more frequent than speciation of a migratory species into two migratory daughter species. However, migratory species often diversify by generating a sedentary daughter species in addition to the ancestral migratory one. This leads to an overall higher migratory speciation rate. Migratory species also experience lower extinction rates. Hence, although migratory species represent a minority (18.5%) of all extant birds, they have a higher net diversification rate than sedentary species. These results suggest that the evolution of seasonal migration in birds has facilitated diversification through the divergence of migratory subpopulations that become sedentary, and illustrate asymmetrical diversification as a mechanism by which diversification rates are decoupled from species richness.


Sign in / Sign up

Export Citation Format

Share Document