Diversity and preserved shell coloration patterns of Miocene Conidae (Neogastropoda) from an exposure of the Gatun Formation, Colón Province, Panama

2018 ◽  
Vol 92 (5) ◽  
pp. 804-837 ◽  
Author(s):  
Jonathan R. Hendricks

AbstractExtant members of the neogastropod family Conidae (cone snails) are renowned for their often dazzling shell coloration patterns and venomous feeding habits. Many cone snail species have also been described from the fossil record, but to date have been little used to understand the evolutionary history of extant clades. The cone snail fauna of the Miocene Gatun Formation of Colón Province, Panama is especially important for understanding the temporal and biogeographic history of tropical American Conidae. Intensive, focused collecting from an exposure of the lower Gatun Formation (deposited ca. 11–10 Ma) resulted in the discovery of nearly 900 specimens of Conidae. Remarkably, many of these well-preserved specimens exhibit revealed coloration patterns when exposed to ultraviolet light. The fluorescing coloration patterns were used in conjunction with other features of shell morphology to differentiate species and, in most cases, evaluate their potential relationships to members of the extant tropical American fauna. Nine species are fully described from this locality, one of which is recognized as new:Conus(Stephanoconus)woodringin. sp. At least one, and perhaps more, additional Conidae species are also present at the study locality. The diversity of this Conidae fauna is considered moderate relative to other recently analyzed tropical American fossil assemblages. The phylogenetic diversity of the assemblage, however, is noteworthy: six of the ten species can be confidently assigned to six different clades of extant Conidae, providing potentially useful calibration points for future phylogenetic studies.http://zoobank.org/8fe00c31-8f3f-4514-85af-29068e468cd3

2020 ◽  
Vol 287 (1928) ◽  
pp. 20200480 ◽  
Author(s):  
Rodolpho S. T. Menezes ◽  
Michael W. Lloyd ◽  
Seán G. Brady

The Neotropical realm harbours unparalleled species richness and hence has challenged biologists to explain the cause of its high biotic diversity. Empirical studies to shed light on the processes underlying biological diversification in the Neotropics are focused mainly on vertebrates and plants, with little attention to the hyperdiverse insect fauna. Here, we use phylogenomic data from ultraconserved element (UCE) loci to reconstruct for the first time the evolutionary history of Neotropical swarm-founding social wasps (Hymenoptera, Vespidae, Epiponini). Using maximum likelihood, Bayesian, and species tree approaches we recovered a highly resolved phylogeny for epiponine wasps. Additionally, we estimated divergence dates, diversification rates, and the biogeographic history for these insects in order to test whether the group followed a ‘museum’ (speciation events occurred gradually over many millions of years) or ‘cradle’ (lineages evolved rapidly over a short time period) model of diversification. The origin of many genera and all sampled extant Epiponini species occurred during the Miocene and Plio-Pleistocene. Moreover, we detected no major shifts in the estimated diversification rate during the evolutionary history of Epiponini, suggesting a relatively gradual accumulation of lineages with low extinction rates. Several lines of evidence suggest that the Amazonian region played a major role in the evolution of Epiponini wasps. This spatio-temporal diversification pattern, most likely concurrent with climatic and landscape changes in the Neotropics during the Miocene and Pliocene, establishes the Amazonian region as the major source of Neotropical swarm-founding social wasp diversity.


2018 ◽  
Vol 5 (6) ◽  
pp. 863-869 ◽  
Author(s):  
Jianni Liu ◽  
Rudy Lerosey-Aubril ◽  
Michael Steiner ◽  
Jason A Dunlop ◽  
Degan Shu ◽  
...  

Abstract The rapid rise of arthropods during the Cambrian quickly established some clades, such as the euarthropod stem-group called Radiodonta, as the dominant and most diverse predators in marine ecosystems. Recent discoveries have shown that the size and dietary ecology of radiodontans are far more diverse than previously thought, but little is known about the feeding habits of juveniles. Here, we document a very small (∼18-mm-long), near-complete specimen of the radiodontan Lyrarapax unguispinus from the early Cambrian Chengjiang Biota of China. This specimen is the smallest radiodontan individual known, representing a juvenile instar. Its adult-like morphology—especially the fully developed spinose frontal appendages and tetraradial oral cone—indicates that L. unguispinus was a well-equipped predator at an early developmental stage, similar to modern raptorial euarthropods, such as mantises, mantis shrimps and arachnids. This evidence, coupled with the basal phylogenetic position of radiodontans, confirms that raptorial feeding habits in juvenile euarthropods appeared early in the evolutionary history of the group.


Diversity ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 70 ◽  
Author(s):  
Juan C. Garcia-R ◽  
Emily Moriarty Lemmon ◽  
Alan R. Lemmon ◽  
Nigel French

The integration of state-of-the-art molecular techniques and analyses, together with a broad taxonomic sampling, can provide new insights into bird interrelationships and divergence. Despite their evolutionary significance, the relationships among several rail lineages remain unresolved as does the general timescale of rail evolution. Here, we disentangle the deep phylogenetic structure of rails using anchored phylogenomics. We analysed a set of 393 loci from 63 species, representing approximately 40% of the extant familial diversity. Our phylogenomic analyses reconstruct the phylogeny of rails and robustly infer several previously contentious relationships. Concatenated maximum likelihood and coalescent species-tree approaches recover identical topologies with strong node support. The results are concordant with previous phylogenetic studies using small DNA datasets, but they also supply an additional resolution. Our dating analysis provides contrasting divergence times using fossils and Bayesian and non-Bayesian approaches. Our study refines the evolutionary history of rails, offering a foundation for future evolutionary studies of birds.


2011 ◽  
Vol 366 (1576) ◽  
pp. 2414-2425 ◽  
Author(s):  
T. Jonathan Davies ◽  
Lauren B. Buckley

Phylogenetic diversity (PD) captures the shared ancestry of species, and is increasingly being recognized as a valuable conservation currency. Regionally, PD frequently covaries closely with species richness; however, variation in speciation and extinction rates and/or the biogeographic history of lineages can result in significant deviation. Locally, these differences may be pronounced. Rapid recent speciation or high temporal turnover of lineages can result in low PD but high richness. In contrast, rare dispersal events, for example, between biomes, can elevate PD but have only small impact on richness. To date, environmental predictors of species richness have been well studied but global models explaining variation in PD are lacking. Here, we contrast the global distribution of PD versus species richness for terrestrial mammals. We show that an environmental model of lineage diversification can predict well the discrepancy in the distribution of these two variables in some places, for example, South America and Africa but not others, such as Southeast Asia. When we have information on multiple diversity indices, conservation efforts directed towards maximizing one currency or another (e.g. species richness versus PD) should also consider the underlying processes that have shaped their distributions.


2017 ◽  
Author(s):  
Christine D. Bacon ◽  
Francisco Velásquez-Puentes ◽  
Luis Felipe Hinojosa ◽  
Thomas Schwartz ◽  
Bengt Oxelman ◽  
...  

Several studies have demonstrated the contribution of northern immigrants to the flora of the tropical Andes – the world’s “hottest” biodiversity hotspot. However, much less is known about the biogeographic history and diversification of Andean groups with southern origins, although it has been suggested that northern and southern groups have contributed roughly equally to the high Andean (i.e. páramo) flora. Here we infer the evolutionary history of the southern hemisphere plant genus Gunnera, a lineage with a rich fossil history and an important ecological role as an early colonising species characteristic of wet, montane environments. Our results show striking contrasts in species diversification, where some species may have persisted for some 90 million years, whereas others date to less than 2 Ma since origination. The outstanding longevity of the group is likely linked to a high degree of niche conservatism across its highly disjunct range, whereby Gunnera tracks damp and boggy soils in cool habitats. Colonisation of the northern Andes is related to Quaternary climate change, with subsequent rapid diversification appearing to be driven by their ability to take advantage of environmental opportunities. This study demonstrates the composite origin of a mega-diverse biota.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11917
Author(s):  
Violeta Cárcamo-Tejer ◽  
Irma Vila ◽  
Francisco Llanquín-Rosas ◽  
Alberto Sáez-Arteaga ◽  
Claudia Guerrero-Jiménez

From the early Miocene, the uplift of the Andes Mountains, intense volcanic activity and the occurrence of successive periods of dryness and humidity would have differentially influenced the modification of Altiplano watersheds, and consequently the evolutionary history of the taxa that live there. We analyzed Orestias populations from the Caquena and Lauca Altiplanic sub-basins of northern Chile to determine their genetic differentiation and relationship to their geographical distribution using mitochondrial (D-loop) and nuclear (microsatellite) molecular markers and to reconstruct its biogeographic history on these sub-basins. The results allowed reconstructing and reevaluating the evolutionary history of the genus in the area; genic diversity and differentiation together with different founding genetic groups suggest that Orestias have been spread homogeneously in the study area and would have experienced local disturbances that promoted isolation and diversification in restricted zones of their distribution.


2011 ◽  
Vol 8 (2) ◽  
pp. 222-225 ◽  
Author(s):  
Shan Huang ◽  
T. Jonathan Davies ◽  
John L. Gittleman

Phylogenetic diversity (PD) represents the evolutionary history of a species assemblage and is a valuable measure of biodiversity because it captures not only species richness but potentially also genetic and functional diversity. Preserving PD could be critical for maintaining the functional integrity of the world's ecosystems, and species extinction will have a large impact on ecosystems in areas where the ecosystem cost per species extinction is high. Here, we show that impacts from global extinctions are linked to spatial location. Using a phylogeny of all mammals, we compare regional losses of PD against a model of random extinction. At regional scales, losses differ dramatically: several biodiversity hotspots in southern Asia and Amazonia will lose an unexpectedly large proportion of PD. Global analyses may therefore underestimate the impacts of extinction on ecosystem processes and function because they occur at finer spatial scales within the context of natural biogeography.


2019 ◽  
Vol 100 (5) ◽  
pp. 1546-1563
Author(s):  
James L Patton ◽  
Daniel F Williams ◽  
Patrick A Kelly ◽  
Brian L Cypher ◽  
Scott E Phillips

Abstract We examined geographic patterns of diversification in the highly impacted San Joaquin kangaroo rat, Dipodomys nitratoides, throughout its range in the San Joaquin Valley and adjacent basins in central California. The currently recognized subspecies were distinct by the original set of mensural and color variables used in their formal diagnoses, although the Fresno kangaroo rat (D. n. exilis) is the most strongly differentiated with sharp steps in character clines relative to the adjacent Tipton (D. n. nitratoides) and short-nosed (D. n. brevinasus) races. The latter two grade more smoothly into one another but still exhibit independent, and different, character clines within themselves. At the molecular level, as delineated by mtDNA cytochrome b sequences, most population samples retain high levels of diversity despite significant retraction in the species range and severe fragmentation of local populations in recent decades due primarily to landscape conversion for agriculture and secondarily to increased urbanization. Haplotype apportionment bears no relationship to morphologically defined subspecies boundaries. Rather, a haplotype network is shallow, most haplotypes are single-step variants, and the time to coalescence is substantially more recent than the time of species split between D. nitratoides and its sister taxon, D. merriami. The biogeographic history of the species within the San Joaquin Valley appears tied to mid-late Pleistocene expansion following significant drying of the valley resulting from the rain shadow produced by uplift of the Central Coastal Ranges.


Sign in / Sign up

Export Citation Format

Share Document