scholarly journals Peptides and receptors controlling root development

2012 ◽  
Vol 367 (1595) ◽  
pp. 1453-1460 ◽  
Author(s):  
Yvonne Stahl ◽  
Rüdiger Simon

The growth of a plant's root system depends on the continued activity of the root meristem, and the generation of new meristems when lateral roots are initiated. Plants have developed intricate signalling systems that employ secreted peptides and plasma membrane-localized receptor kinases for short- and long-range communication. Studies on growth of the vascular system, the generation of lateral roots, the control of cell differentiation in the root meristem and the interaction with invading pathogens or symbionts has unravelled a network of peptides and receptor systems with occasionally shared functions. A common theme is the employment of conserved modules, consisting of a short signalling peptide, a receptor-like kinase and a target transcription factor, that control the fate and proliferation of stem cells during root development. This review intends to give an overview of the recent advances in receptor and peptide ligand-mediated signalling involved in root development.

2019 ◽  
Author(s):  
Vilde Olsson ◽  
Elwira Smakowska-Luzan ◽  
Maike Breiden ◽  
Peter Marhavy ◽  
Rebecca Schneeweiss ◽  
...  

AbstractThe abscission of floral organs and emergence of lateral roots in Arabidopsis is regulated by the peptide ligand INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) and the receptor protein kinases HAESA (HAE), HAESA-LIKE 2 (HSL2) and members of the SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) family. These cell separation processes lead to induction of defense-associated genes to protect against pathogen invasion. However, the molecular coordination between abscission and immunity has not been thoroughly explored. Here we show that IDA induces a receptor-dependent release of cytosolic calcium and an extracellular release of reactive oxygen species which are signatures of defense responses. IDA promotes heteromerization between HSL2 and RECEPTOR LIKE KINASE 7 (RLK7), a receptor that enhances immunity and pathogen responses, and utilizes this novel signaling module to regulate the expression of defense-associated genes. We propose a molecular mechanism by which IDA drives specific immune response in cells destined for separation to guard them from pathogen attack.


2000 ◽  
Vol 78 (9) ◽  
pp. 1125-1135
Author(s):  
Dolors Verdaguer ◽  
Pedro J Casero ◽  
Marisa Molinas

The distribution and the ontogenesis of lateral roots have been investigated in the Mediterranean woody species Quercus suber L. (cork oak). Lateral roots arose in protoxylem-based ranks and a tendency to clumping was observed. Three stages are distinguished in lateral root primordium development. Lateral root primordia are derived mainly from pericycle cells. The endodermis contributed to the initial lateral root development, forming an endodermal cover that sloughs off with lateral root emergence. The unemerged lateral roots show an incipient layered root meristem; this meristem can be classified as a closed type meristem. Primary vascular connection takes place with the xylem strand opposite the lateral root primordium and the two adjacent phloem strands. Primary vascular connector elements are derived from pericyclic derivative cells. Vascular parenchyma cells contribute mainly in the development of the cambium and the subsequent secondary xylem and phloem connector elements. The secondary vascular elements of the lateral root and parent root differentiate in continuity. Vascular connection is discussed in relation to the root vascular plexus described in monocotyledonous and in some herbaceous dicotyledonous plants. An endodermis with suberized lamellae is continuous between the lateral and parent root in emerged lateral roots.Key words: lateral root, development pattern, apical lateral root meristem, root vascular connection, Quercus suber L.


2021 ◽  
Author(s):  
Pierre-Mathieu Pélissier ◽  
Hans Motte ◽  
Tom Beeckman

Abstract Lateral roots are important to forage for nutrients due to their ability to increase the uptake area of a root system. Hence, it comes as no surprise that lateral root formation is affected by nutrients or nutrient starvation, and as such contributes to the root system plasticity. Understanding the molecular mechanisms regulating root adaptation dynamics towards nutrient availability is useful to optimize plant nutrient use efficiency. There is at present a profound, though still evolving, knowledge on lateral root pathways. Here, we aimed to review the intersection with nutrient signaling pathways to give an update on the regulation of lateral root development by nutrients, with a particular focus on nitrogen. Remarkably, it is for most nutrients not clear how lateral root formation is controlled. Only for nitrogen, one of the most dominant nutrients in the control of lateral root formation, the crosstalk with multiple key signals determining lateral root development is clearly shown. In this update, we first present a general overview of the current knowledge of how nutrients affect lateral root formation, followed by a deeper discussion on how nitrogen signaling pathways act on different lateral root-mediating mechanisms for which multiple recent studies yield insights.


2011 ◽  
Vol 24 (1) ◽  
pp. 100-107 ◽  
Author(s):  
Tingting Xiang ◽  
Na Zong ◽  
Jie Zhang ◽  
Jinfeng Chen ◽  
Mingsheng Chen ◽  
...  

Plant cell surface-localized receptor kinases such as FLS2, EFR, and CERK1 play a crucial role in detecting invading pathogenic bacteria. Upon stimulation by bacterium-derived ligands, FLS2 and EFR interact with BAK1, a receptor-like kinase, to activate immune responses. A number of Pseudomonas syringae effector proteins are known to block immune responses mediated by these receptors. Previous reports suggested that both FLS2 and BAK1 could be targeted by the P. syringae effector AvrPto to inhibit plant defenses. Here, we provide new evidence further supporting that FLS2 but not BAK1 is targeted by AvrPto in plants. The AvrPto-FLS2 interaction prevented the phosphorylation of BIK1, a downstream component of the FLS2 pathway.


2013 ◽  
Vol 93 (2) ◽  
pp. 165-170 ◽  
Author(s):  
Shuaizhang Li ◽  
Jiajia Ma ◽  
Pei Liu

Li, S., Ma, J. and Liu, P. 2013. OPR3 is expressed in phloem cells and is vital for lateral root development in Arabidopsis. Can. J. Plant Sci. 93: 165–170. Jasmonates, a group of oxylipin phytohormones in angiosperms, play important roles in regulating plant growth and development and in responding to environmental stimuli. AtOPR3, a 12-oxo-phytodienoic acid (OPDA) reductase in Arabidopsis thaliana, has been proven to be vital in catalyzing jasmonate biosynthesis. Here, the temporal and spatial expression of AtOPR3 was investigated by promoter-GUS fusion in A. thaliana. In pOPR3::GUS transgenic plants, the GUS activity was detected in roots, leaves and all floral organs, and was highly induced by MeJA treatment. In addition, the GUS activity was principally detected in the phloem cells of the leaf veins. The sequence of the OPR3 promoter region was predicted to have 49 potential binding sites for transcription factors including the well-known Myc-like basic helix-loop-helix, GATA, MADS, MYB-like and Homeobox proteins. In consistent with an expression of OPR3 in lateral roots, there are more lateral roots in the opr3 mutant plants, in which OPR3 expression is knocking-out. In addition, the involvement of auxin biosynthesis in JA-regulated lateral root development is implied by our observation that the transcripts of ASA1, a gene involved in auxin biosynthesis, are decreased in opr3 plants.


1981 ◽  
Vol 11 (4) ◽  
pp. 752-757 ◽  
Author(s):  
William C. Carlson

Controlled-release fertilizers applied to the root zone of 1-0 plug western hemlock (Tsugaheterophylla Raf. Sarg.) at planting stimulated shoot and root growth in the following two growing seasons. The number and diameter of lateral roots was increased by fertilizing, but fertilizing did not alter the shoot–root ratio. The shoot–root ratio did not increase with an increase in seedling size, height, or total weight.


2020 ◽  
Vol 38 (4) ◽  
pp. 143-148
Author(s):  
G. W. Watson ◽  
A.M. Hewitt

Abstract The number and size of lateral roots of a tree seedling can be evaluated visually, and could potentially be used to select plants with better root systems early in nursery production. To evaluate how root architecture develops in young trees, root architecture of 37 species of trees was compared at two stages of development: as harvested seedlings, and then one year after replanting. The total number of lateral roots and the number of roots >2mm (0.08 in) diameter that were present on the portion of the taproot remaining on seedlings after standard root pruning were recorded. Neither could consistently predict the number of lateral roots on the root system one year after replanting. Development of roots (sum of diameters) regenerated from the cut end of the seedling taproot was equal or greater than lateral root development in 84 percent of evaluated species. Even when regenerated root development was significantly less than lateral root development, the regenerated roots still comprised up to 44 percent of the root system. Regenerated roots from the cut end of the taproot can become a major component of the architecture of the structural root system in nursery stock. Index words: structural roots, nursery production, root regeneration. Species used in this study: European black alder (Alnus glutinosa Gaertn.), green ash (Fraxinus pennsylvanica Marshall), quaking aspen (Populus tremuloides Michx.), European white birch. (Betula pendula Roth), river birch (Betula nigra L.), black locust (Robinia pseudoacacia L.), northern catalpa (Catalpa speciosa (Warder) Warder ex Engelm.), Mazzard cherry [Prunus avium [L.) L.], chokecherry (Prunus virginiana L.), American elm (Ulmus americana L.), Siberian elm (Ulmus pumilia L.), goldenchain tree (Laburnum anagyroides Medik.), northern hackberry (Celtis occidentalis L.), Cockspur hawthorn (Crateagus crus-galli L.), single seed hawthorn (Crateagus monogyna Jacq.), honeylocust (Gleditsia tricanthos L.), Japanese pagodatree [Sophora japonica (L.) Schott], Katsura tree (Cercidiphyllum japonicum Siebold & Zucc.), Kentucky coffee tree [Gymnocladus dioicus (L.) K. Koch], littleleaf linden (Tilia cordata Mill.), boxelder (Acer negundo L.), hedge maple (Acer campestre L.), Norway maple (Acer platanoides L.), red maple (Acer rubrum L.), silver maple (Acer saccharinum L.), sugar maple (Acer saccharum Marshall), sycamore maple (Acer pseudoplatanus L.), English Oak (Quercus robur L.), northern red oak (Quercus rubra L.), Siberian peashrub (Caragana arborescens Lam.), American plum (Prunus Americana Marshall ), Myrobalan plum (Prunus cerasifera Ehrh.), redbud (Cercis Canadensis L.), Russian olive (Elaeagnus angustifoliaI L.), tuliptree (Liriodendron tulipifera L.), black walnut (Juglans nigra L.), Japanese zelkova (Zelkova serrata (Thunb.) Makino).


Sign in / Sign up

Export Citation Format

Share Document