scholarly journals BAK1 Is Not a Target of the Pseudomonas syringae Effector AvrPto

2011 ◽  
Vol 24 (1) ◽  
pp. 100-107 ◽  
Author(s):  
Tingting Xiang ◽  
Na Zong ◽  
Jie Zhang ◽  
Jinfeng Chen ◽  
Mingsheng Chen ◽  
...  

Plant cell surface-localized receptor kinases such as FLS2, EFR, and CERK1 play a crucial role in detecting invading pathogenic bacteria. Upon stimulation by bacterium-derived ligands, FLS2 and EFR interact with BAK1, a receptor-like kinase, to activate immune responses. A number of Pseudomonas syringae effector proteins are known to block immune responses mediated by these receptors. Previous reports suggested that both FLS2 and BAK1 could be targeted by the P. syringae effector AvrPto to inhibit plant defenses. Here, we provide new evidence further supporting that FLS2 but not BAK1 is targeted by AvrPto in plants. The AvrPto-FLS2 interaction prevented the phosphorylation of BIK1, a downstream component of the FLS2 pathway.

2003 ◽  
Vol 185 (24) ◽  
pp. 7092-7102 ◽  
Author(s):  
Laurent Noël ◽  
Frank Thieme ◽  
Jana Gäbler ◽  
Daniela Büttner ◽  
Ulla Bonas

ABSTRACT Pathogenicity of the gram-negative plant pathogen Xanthomonas campestris pv. vesicatoria depends on a type III secretion (TTS) system which translocates bacterial effector proteins into the plant cell. Previous transcriptome analysis identified a genome-wide regulon of putative virulence genes that are coexpressed with the TTS system. In this study, we characterized two of these genes, xopC and xopJ. Both genes encode Xanthomonas outer proteins (Xops) that were shown to be secreted by the TTS system. In addition, type III-dependent translocation of both proteins into the plant cell was demonstrated using the AvrBs3 effector domain as a reporter. XopJ belongs to the AvrRxv/YopJ family of effector proteins from plant and animal pathogenic bacteria. By contrast, XopC does not share significant homology to proteins in the database. Sequence analysis revealed that the xopC locus contains several features that are reminiscent of pathogenicity islands. Interestingly, the xopC region is flanked by 62-bp inverted repeats that are also associated with members of the Xanthomonas avrBs3 effector family. Besides xopC, a second gene of the locus, designated hpaJ, was shown to be coexpressed with the TTS system. hpaJ encodes a protein with similarity to transglycosylases and to the Pseudomonas syringae pv. maculicola protein HopPmaG. HpaJ secretion and translocation by the X. campestris pv. vesicatoria TTS system was not detectable, which is consistent with its predicted Sec signal and a putative function as transglycosylase in the bacterial periplasm.


2009 ◽  
Vol 22 (1) ◽  
pp. 96-106 ◽  
Author(s):  
Ayako Furutani ◽  
Minako Takaoka ◽  
Harumi Sanada ◽  
Yukari Noguchi ◽  
Takashi Oku ◽  
...  

Many gram-negative bacteria secrete so-called effector proteins via a type III secretion (T3S) system. Through genome screening for genes encoding potential T3S effectors, 60 candidates were selected from rice pathogen Xanthomonas oryzae pv. oryzae MAFF311018 using these criteria: i) homologs of known T3S effectors in plant-pathogenic bacteria, ii) genes with expression regulated by hrp regulatory protein HrpX, or iii) proteins with N-terminal amino acid patterns associated with T3S substrates of Pseudomonas syringae. Of effector candidates tested with the Bordetella pertussis calmodulin-dependent adenylate cyclase reporter for translocation into plant cells, 16 proteins were translocated in a T3S system-dependent manner. Of these 16 proteins, nine were homologs of known effectors in other plant-pathogenic bacteria and seven were not. Most of the effectors were widely conserved in Xanthomonas spp.; however, some were specific to X. oryzae. Interestingly, all these effectors were expressed in an HrpX-dependent manner, suggesting coregulation of effectors and the T3S system. In X. campestris pv. vesicatoria, HpaB and HpaC (HpaP in X. oryzae pv. oryzae) have a central role in recruiting T3S substrates to the secretion apparatus. Secretion of all but one effector was reduced in both HpaB– and HpaP– mutant strains, indicating that HpaB and HpaP are widely involved in efficient secretion of the effectors.


2001 ◽  
Vol 14 (3) ◽  
pp. 394-404 ◽  
Author(s):  
Ian R. Brown ◽  
John W. Mansfield ◽  
Suvi Taira ◽  
Elina Roine ◽  
Martin Romantschuk

The Hrp pilus, composed of HrpA subunits, is an essential component of the type III secretion system in Pseudomonas syringae. We used electron microscopy (EM) and immunocytochemistry to examine production of the pilus in vitro from P. syringae pv. tomato strain DC3000 grown under hrp-inducing conditions on EM grids. Pili, when labeled with antibodies to HrpA, developed rapidly in a nonpolar manner shortly after the detection of the hrpA transcript and extended up to 5 μm into surrounding media. Structures at the base of the pilus were clearly differentiated from the basal bodies of flagella. The HrpZ protein, also secreted via the type III system, was found by immunogold labeling to be associated with the pilus in vitro. Accumulation and secretion of HrpA and HrpZ were also examined quantitatively after the inoculation of wild-type DC3000 and hrpA and hrpZ mutants into leaves of Arabidopsis thaliana. The functional pilus crossed the plant cell wall to generate tracks of immunogold labeling for HrpA and HrpZ. Mutants that produced HrpA but did not assemble pili were nonpathogenic, did not secrete HrpA protein, and were compromised for the accumulation of HrpZ. A model is proposed in which the rapidly elongating Hrp pilus acts as a moving conveyor, facilitating transfer of effector proteins from bacteria to the plant cytoplasm across the formidable barrier of the plant cell wall.


2008 ◽  
Vol 190 (8) ◽  
pp. 2880-2891 ◽  
Author(s):  
Jennifer D. Lewis ◽  
Wasan Abada ◽  
Wenbo Ma ◽  
David S. Guttman ◽  
Darrell Desveaux

ABSTRACT Pseudomonas syringae utilizes the type III secretion system to translocate effector proteins into plant cells, where they can contribute to the pathogen's ability to infect and cause disease. Recognition of these effectors by resistance proteins induces defense responses that typically include a programmed cell death reaction called the hypersensitive response. The YopJ/HopZ family of type III effector proteins is a common family of effector proteins found in animal- and plant-pathogenic bacteria. The HopZ family in P. syringae includes HopZ1aPsyA2, HopZ1bPgyUnB647, HopZ1cPmaE54326, HopZ2Ppi895A and HopZ3PsyB728a. HopZ1a is predicted to be most similar to the ancestral hopZ allele and causes a hypersensitive response in multiple plant species, including Arabidopsis thaliana. Therefore, it has been proposed that host defense responses have driven the diversification of this effector family. In this study, we further characterized the hypersensitive response induced by HopZ1a and demonstrated that it is not dependent on known resistance genes. Further, we identified a novel virulence function for HopZ2 that requires the catalytic cysteine demonstrated to be required for protease activity. Sequence analysis of the HopZ family revealed the presence of a predicted myristoylation sequence in all members except HopZ3. We demonstrated that the myristoylation site is required for membrane localization of this effector family and contributes to the virulence and avirulence activities of HopZ2 and HopZ1a, respectively. This paper provides insight into the selective pressures driving virulence protein evolution by describing a detailed functional characterization of the diverse HopZ family of type III effectors with the model plant Arabidopsis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jack Rhodes ◽  
Huanjie Yang ◽  
Steven Moussu ◽  
Freddy Boutrot ◽  
Julia Santiago ◽  
...  

AbstractPlant genomes encode hundreds of receptor kinases and peptides, but the number of known plant receptor-ligand pairs is limited. We report that the Arabidopsis leucine-rich repeat receptor kinase LRR-RK MALE DISCOVERER 1-INTERACTING RECEPTOR LIKE KINASE 2 (MIK2) is the receptor for the SERINE RICH ENDOGENOUS PEPTIDE (SCOOP) phytocytokines. MIK2 is necessary and sufficient for immune responses triggered by multiple SCOOP peptides, suggesting that MIK2 is the receptor for this divergent family of peptides. Accordingly, the SCOOP12 peptide directly binds MIK2 and triggers complex formation between MIK2 and the BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1) co-receptor. MIK2 is required for resistance to the important root pathogen Fusarium oxysporum. Notably, we reveal that Fusarium proteomes encode SCOOP-like sequences, and corresponding synthetic peptides induce MIK2-dependent immune responses. These results suggest that MIK2 may recognise Fusarium-derived SCOOP-like sequences to induce immunity against Fusarium. The definition of SCOOPs as MIK2 ligands will help to unravel the multiple roles played by MIK2 during plant growth, development and stress responses.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hernan G. Rosli ◽  
Emilia Sirvent ◽  
Florencia N. Bekier ◽  
Romina N. Ramos ◽  
Marina A. Pombo

AbstractPlants rely on (in)direct detection of bacterial pathogens through plasma membrane-localized and intracellular receptor proteins. Surface pattern-recognition receptors (PRRs) participate in the detection of microbe-associated molecular patterns (MAMPs) and are required for the activation of pattern-triggered immunity (PTI). Pathogenic bacteria, such as Pseudomonas syringae pv. tomato (Pst) deploys ~ 30 effector proteins into the plant cell that contribute to pathogenicity. Resistant plants are capable of detecting the presence or activity of effectors and mount another response termed effector-triggered immunity (ETI). In order to investigate the involvement of tomato’s long non-coding RNAs (lncRNAs) in the immune response against Pst, we used RNA-seq data to predict and characterize those that are transcriptionally active in leaves challenged with a large set of treatments. Our prediction strategy was validated by sequence comparison with tomato lncRNAs described in previous works and by an alternative approach (RT-qPCR). Early PTI (30 min), late PTI (6 h) and ETI (6 h) differentially expressed (DE) lncRNAs were identified and used to perform a co-expression analysis including neighboring (± 100 kb) DE protein-coding genes. Some of the described networks could represent key regulatory mechanisms of photosynthesis, PRR abundance at the cell surface and mitigation of oxidative stress, associated to tomato-Pst pathosystem.


2021 ◽  
Author(s):  
Nitika Mukhi ◽  
Hannah Brown ◽  
Danylo Gorenkin ◽  
Pingtao Ding ◽  
Adam R Bentham ◽  
...  

Plants use intracellular immune receptors (NLRs) to detect pathogen-derived effector proteins. The Arabidopsis NLR pair RRS1-R/RPS4 confers disease resistance to different bacterial pathogens by perceiving structurally distinct effectors AvrRps4 from Pseudomonas syringae pv. pisi and PopP2 from Ralstonia solanacearum via an integrated WRKY domain in RRS1-R. How the WRKY domain of RRS1 (RRS1WRKY) perceives distinct classes of effector to initiate an immune response is unknown. We report here the crystal structure of the in planta processed C-terminal domain of AvrRps4 (AvrRps4C) in complex with RRS1WRKY. Perception of AvrRps4C by RRS1WRKY is mediated by the β2-β3 segment of RRS1WRKY that binds an electronegative patch on the surface of AvrRps4C. Structure-based mutations that disrupt AvrRps4C/RRS1WRKY interactions in vitro compromise RRS1/RPS4-dependent immune responses. We also show that AvrRps4C can associate with the WRKY domain of the related but distinct RRS1B/RPS4B NLR pair, and the DNA binding domain of AtWRKY41, with similar binding affinities. This work demonstrates how integrated domains in plant NLRs can directly bind structurally distinct effectors to initiate immunity.


2019 ◽  
Vol 32 (5) ◽  
pp. 608-621 ◽  
Author(s):  
Meltem Lammertz ◽  
Hannah Kuhn ◽  
Sebastian Pfeilmeier ◽  
Jacob Malone ◽  
Cyril Zipfel ◽  
...  

Successful pathogens must efficiently defeat or delay host immune responses, including those triggered by release or exposure of microbe-associated molecular patterns (MAMPs). Knowledge of the molecular details leading to this phenomenon in genuine plant–pathogen interactions is still scarce. We took advantage of the well-established Arabidopsis thaliana–Pseudomonas syringae pv. tomato DC3000 pathosystem to explore the molecular prerequisites for the suppression of MAMP-triggered host defense by the bacterial invader. Using a transgenic Arabidopsis line expressing the calcium sensor apoaequorin, we discovered that strain DC3000 colonization results in a complete inhibition of MAMP-induced cytosolic calcium influx, a key event of immediate-early host immune signaling. A range of further plant-associated bacterial species is also able to prevent, either partially or fully, the MAMP-triggered cytosolic calcium pattern. Genetic analysis revealed that this suppressive effect partially relies on the bacterial type III secretion system (T3SS) but cannot be attributed to individual members of the currently known arsenal of strain DC3000 effector proteins. Although the phytotoxin coronatine and bacterial flagellin individually are dispensable for the effective inhibition of MAMP-induced calcium signatures, they contribute to the attenuation of calcium influx in the absence of the T3SS. Our findings suggest that the capacity to interfere with early plant immune responses is a widespread ability among plant-associated bacteria that, at least in strain DC3000, requires the combinatorial effect of multiple virulence determinants. This may also include the desensitization of host pattern recognition receptors by the prolonged exposure to MAMPs during bacterial pathogenesis.


Author(s):  
Jose Rufian ◽  
James Elmore ◽  
Eduardo R Bejarano ◽  
Carmen R. Beuzón ◽  
Gitta Coaker

ER bodies are endoplasmic reticulum-derived organelles present in plants belonging to the Brassicales order. In Arabidopsis thaliana, ER bodies are ubiquitous in cotyledons and roots, and present only in certain cell types in rosette leaves. However, both wounding and jasmonic acid treatment induce the formation of ER bodies in leaves. Formation of this structure is dependent on the transcription factor NAI1. The main components of the ER bodies are β-glucosidases (BGLUs), enzymes that hydrolyze specialized compounds. In Arabidopsis, PYK10 (BGLU23) and BGLU18 are the most abundant ER body proteins. In this work, we found that ER bodies are downregulated as a consequence of the immune responses induced by bacterial flagellin perception. Arabidopsis mutants defective in ER body formation show enhanced responses upon flagellin perception and enhanced resistance to bacterial infections. Furthermore, the bacterial toxin coronatine induces the formation of de novo ER bodies in leaves and its virulence function is partially dependent on this structure. Finally, we show that performance of the polyphagous beet armyworm herbivore, Spodoptera exigua, increases in plants lacking ER bodies. Altogether, we provide new evidence for the role of the ER bodies in plant immune responses.


2007 ◽  
Vol 20 (10) ◽  
pp. 1192-1200 ◽  
Author(s):  
Min Woo Lee ◽  
Hua Lu ◽  
Ho Won Jung ◽  
Jean T. Greenberg

Effector proteins injected by the pathogenic bacteria Pseudomonas syringae into plants can have profound effects on the pathogen–host interaction due to their efficient recognition by plants and the subsequent triggering of defenses. The AvrRpt2 effector triggers strong local and systemic defense (called systemic acquired resistance [SAR]) responses in Arabidopsis thaliana plants that harbor a functional RPS2 gene that encodes an R protein in the coiled-coil, nucleotide-binding domain, leucine-rich repeat class. The newly identified win3-T mutant shows greatly reduced resistance to P. syringae carrying avrRpt2. In win3-T plants, RIN4 cleavage, an early AvrRpt2-induced event, is normal. However, salicylic acid accumulation is compromised, as is SAR induction and the local hypersensitive cell death response after infection by P. syringae carrying avrRpt2. WIN3 encodes a member of the firefly luciferase protein superfamily. Expression of WIN3 at an infection site partially requires PAD4, a protein known to play a quantitative role in RPS2-mediated signaling. WIN3 expression in tissue distal to an infection site requires multiple salicylic acid regulatory genes. Finally, win3-T plants show modestly increased susceptibility to virulent P. syringae and modestly reduced SAR in response to P. syringae carrying avrRpm1. Thus, WIN3 is a key element of the RPS2 defense response pathway and a basal and systemic defense component.


Sign in / Sign up

Export Citation Format

Share Document