scholarly journals Origin of cellular asymmetries in the pre-implantation mouse embryo: a hypothesis

2014 ◽  
Vol 369 (1657) ◽  
pp. 20130536 ◽  
Author(s):  
Katsuyoshi Takaoka ◽  
Hiroshi Hamada

The first cell fate decision during mouse development concerns whether a blastomere will contribute to the inner cell mass (ICM; which gives rise to the embryo proper) or to trophectoderm (TE; which gives rise to the placenta). The position of a cell within an 8- to 16-cell-stage embryo correlates with its future fate, with outer cells contributing to TE and inner cells to the ICM. It remains unknown, however, whether an earlier pre-pattern exists. Here, we propose a hypothesis that could account for generation of such a pre-pattern and which is based on epigenetic asymmetry (such as in histone or DNA methylation) between maternal and paternal genomes in the zygote.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tim Liebisch ◽  
Armin Drusko ◽  
Biena Mathew ◽  
Ernst H. K. Stelzer ◽  
Sabine C. Fischer ◽  
...  

AbstractDuring the mammalian preimplantation phase, cells undergo two subsequent cell fate decisions. During the first decision, the trophectoderm and the inner cell mass are formed. Subsequently, the inner cell mass segregates into the epiblast and the primitive endoderm. Inner cell mass organoids represent an experimental model system, mimicking the second cell fate decision. It has been shown that cells of the same fate tend to cluster stronger than expected for random cell fate decisions. Three major processes are hypothesised to contribute to the cell fate arrangements: (1) chemical signalling; (2) cell sorting; and (3) cell proliferation. In order to quantify the influence of cell proliferation on the observed cell lineage type clustering, we developed an agent-based model accounting for mechanical cell–cell interaction, i.e. adhesion and repulsion, cell division, stochastic cell fate decision and cell fate heredity. The model supports the hypothesis that initial cell fate acquisition is a stochastically driven process, taking place in the early development of inner cell mass organoids. Further, we show that the observed neighbourhood structures can emerge solely due to cell fate heredity during cell division.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Jan J Zylicz ◽  
Maud Borensztein ◽  
Frederick CK Wong ◽  
Yun Huang ◽  
Caroline Lee ◽  
...  

Early mouse development is regulated and accompanied by dynamic changes in chromatin modifications, including G9a-mediated histone H3 lysine 9 dimethylation (H3K9me2). Previously, we provided insights into its role in post-implantation development (Zylicz et al., 2015). Here we explore the impact of depleting the maternally inherited G9a in oocytes on development shortly after fertilisation. We show that G9a accumulates typically at 4 to 8 cell stage to promote timely repression of a subset of 4 cell stage-specific genes. Loss of maternal inheritance of G9a disrupts the gene regulatory network resulting in developmental delay and destabilisation of inner cell mass lineages by the late blastocyst stage. Our results indicate a vital role of this maternally inherited epigenetic regulator in creating conducive conditions for developmental progression and on cell fate choices.


2019 ◽  
Author(s):  
Tim Liebisch ◽  
Armin Drusko ◽  
Biena Mathew ◽  
Ernst H. K. Stelzer ◽  
Sabine C. Fischer ◽  
...  

ABSTRACTDuring the mammalian preimplantation phase, cells undergo two subsequent cell fate decisions. During the first cell fate decision, cells become either part of an outer trophectoderm or part of the inner cell mass. Subsequently, the inner cell mass (ICM) segregates into an embryonic and an extraembryonic lineage, giving rise to the epiblast and the primitive endoderm, respectively. Inner cell mass organoids represent an experimental model system for preimplantation development, mimicking the second cell fate decision taking place in in vivo mouse embryos. In a previous study, the spatial pattern of the different cell lineage types was investigated. The study revealed that cells of the same fate tend to cluster stronger than expected for purely random cell fate decisions. Three major processes are hypothesised to contribute to the final cell fate arrangements at the mid and late blastocysts or 24 h old and 48 h old ICM organoids, respectively: 1) intra- and intercellular chemical signalling; 2) a cell sorting process; 3) cell proliferation. In order to quantify the influence of cell proliferation on the emergence of the observed cell lineage type clustering behaviour, we developed an agent-based model. Hereby, cells are mechanically interacting with direct neighbours, and exert adhesion and repulsion forces. The model was applied to compare several current assumptions of how inner cell mass neighbourhood structures are generated. We tested how different assumptions regarding cell fate switches affect the observed neighbourhood relationships. The model supports the hypothesis that initial cell fate acquisition is a stochastically driven process, taking place in the early development of inner cell mass organoids. The model further shows that the observed neighbourhood structures can emerge due to cell fate heredity during cell division and allows the inference of a time point for the cell fate decision.STATEMENT OF SIGNIFICANCECell fate decisions in early embryogenesis have been considered random events, causing a random cell fate distribution. Using an agent-based mathematical model, fitted to ICM organoid data, we show that the assumed random distribution of cell fates occurs only for a short time interval, as cell fate heredity and cell division quickly lead to spatial cell fate clustering. Our results show that neighbourhood clustering can emerge without specific neighbourhood interactions affecting the cell fate decision. The approach indicates four consecutive phases of early development: 1) co-expression of cell fate markers, 2) cell fate decision, 3) division and local cell fate clustering, and 4) phase separation, whereby only the phases 1-3 occur in ICM organoids during the first 24h of growth.


2021 ◽  
Author(s):  
Stanley E. Strawbridge ◽  
Agata Kurowski ◽  
Elena Corujo-Simon ◽  
Alexander G. Fletcher ◽  
Jennifer Nichols

AbstractA crucial aspect of embryology is relating the position of individual cells to the broader geometry of the embryo. A classic example can be seen in the first cell-fate decision of the mouse embryo, where interior cells become inner cell mass and exterior cells become trophectoderm. Advances in image acquisition and processing technology used by quantitative immunofluorescence have resulted in the production of embryo images with increasingly rich spatial information that demand accessible analytical methods. Here, we describe a simple mathematical framework and an unsupervised machine learning approach for classifying interior and exterior points of a three-dimensional point-cloud. We benchmark our method to demonstrate that it yields higher classification rates for pre-implantation mouse embryos and greater accuracy when challenged with local surface concavities. This method should prove useful to experimentalists within and beyond embryology, with broader applications in the biological and life sciences.


Development ◽  
1978 ◽  
Vol 48 (1) ◽  
pp. 53-72
Author(s):  
C. F. Graham ◽  
Z. A. Deussen

The cell lineage of the mouse was studied from the 2-cell stage to the blastocyst. Lineage to the 8-cell stage was followed under the microscope. Each cell from the 2-cell stage divided to form two daughter cells which remained attached. Subsequently, these two daughters each produced two descendants; one of these descendants regularly lay deep in the structure of the embryo while the other was peripheral. Lineage to the blastocyst was followed by injecting oil drops into cells at the 8-cell stage, and then following the segregation of these drops into the inner cell mass and trophectoderm. Between the 8-cell stage and the blastocyst, the deep cells contributed more frequently to the inner cell mass than did the peripheral cells.


PLoS Genetics ◽  
2012 ◽  
Vol 8 (6) ◽  
pp. e1002732 ◽  
Author(s):  
Sudeep D. Agarwala ◽  
Hannah G. Blitzblau ◽  
Andreas Hochwagen ◽  
Gerald R. Fink

2009 ◽  
Vol 21 (9) ◽  
pp. 21
Author(s):  
J. M. Campbell ◽  
I. Vassiliev ◽  
M. B. Nottle ◽  
M. Lane

Human ESCs are produced from embryos donated at the mid-stage of pre-implantation development. This cryostorage reduced viability. However, it has been shown that this can be improved by the addition of growth factors to culture medium. The aim of the present study was to examine whether the addition of insulin to embryo culture medium from the 8-cell stage of development increases the number of ES cell progenitor cells in the epiblast in a mouse model. In vivo produced mouse zygotes (C57Bl6 strain) were cultured in G1 medium for 48h to the 8-cell stage, followed by culture in G2 supplemented with insulin (0, 0.17, 1.7 and 1700pM) for 68h, at 37 o C , in 5% O2, 6%CO2, 89% N2 . The number of cells in the inner cell mass (ICM) and epiblast was determined by immunohistochemical staining for Oct4 and Nanog. ICM cells express Oct4, epiblast cells express both Oct4 and Nanog. The addition of insulin at the concentrations examined did not increase the ICM. However, at 1.7pM insulin increased the number of epiblast cells (6.6±0.5 cells vs 4.1±0.5, P=0.001) in the ICM, which increased the proportion of the ICM that was epiblast (38.9±3.7% compared to 25.8±3.4% in the control P=0.01). This indicates that the increase in the epiblast is brought about by a shift in cell fate as opposed to an increase in cell division. The effect of insulin on the proportion of cells in the epiblast was investigated using inhibitors of phosphoinositide3-kinase (PI3K) (LY294002, 50µM); one of insulin's main second messengers, and p53 (pifithrin-α, 30µg/ml); a pro-apoptotic protein inactivated by PI3K. Inhibition of PI3K eliminated the increase caused by insulin (4.5±0.3 cells versus 2.2±0.3 cells, P<0.001), while inhibition of p53 increased the epiblast cell number compared to the control (7.1±0.8 and 4.1±0.7 respectively P=0.001). This study shows that insulin increases epiblast cell number through the activation of PI3K and the inhibition of p53, and may be a strategy for improving ESC isolation from human embryos.


Science ◽  
2019 ◽  
Vol 366 (6461) ◽  
pp. 116-120 ◽  
Author(s):  
Nathan D. Lord ◽  
Thomas M. Norman ◽  
Ruoshi Yuan ◽  
Somenath Bakshi ◽  
Richard Losick ◽  
...  

Cell fate decision circuits must be variable enough for genetically identical cells to adopt a multitude of fates, yet ensure that these states are distinct, stably maintained, and coordinated with neighboring cells. A long-standing view is that this is achieved by regulatory networks involving self-stabilizing feedback loops that convert small differences into long-lived cell types. We combined regulatory mutants and in vivo reconstitution with theory for stochastic processes to show that the marquee features of a cell fate switch in Bacillus subtilis—discrete states, multigenerational inheritance, and timing of commitments—can instead be explained by simple stochastic competition between two constitutively produced proteins that form an inactive complex. Such antagonistic interactions are commonplace in cells and could provide powerful mechanisms for cell fate determination more broadly.


Nature ◽  
2006 ◽  
Vol 439 (7075) ◽  
pp. 502-502
Author(s):  
Alejandro Colman-Lerner ◽  
Andrew Gordon ◽  
Eduard Serra ◽  
Tina Chin ◽  
Orna Resnekov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document