scholarly journals Imaging morphogenesis

2017 ◽  
Vol 372 (1720) ◽  
pp. 20150511 ◽  
Author(s):  
Donald M. Bell

The hostile environment of the microscope stage poses numerous challenges to successful imaging of morphogenesis in live tissues. This review aims to highlight some of the main practical considerations to take into account when embarking on a project to image cell behaviour in the context of cells' normal surroundings. Scrutiny of these activities is likely to be the most informative approach to understanding mechanical morphogenesis but is often confounded by the substantial technical difficulties involved in imaging samples over extended periods of time. Repeated observation of cells in live tissue requires that strategies be adopted to prioritize the stability of the sample, ensuring that it remains viable and develops normally while being held in a manner accessible to microscopic examination. Key considerations when creating reliable protocols for time-lapse imaging may be broken down into three main criteria; labelling, mounting and image acquisition. Choices and compromises made here, however, will directly influence image quality, and even small refinements can substantially improve what information may be extracted from images. Live imaging of tissue is difficult but paying close attention to the basics along with a little innovation is likely to be well rewarded. This article is part of the themed issue ‘Systems morphodynamics: understanding the development of tissue hardware’.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Claudia Prahst ◽  
Parham Ashrafzadeh ◽  
Thomas Mead ◽  
Ana Figueiredo ◽  
Karen Chang ◽  
...  

As the general population ages, more people are affected by eye diseases, such as retinopathies. It is therefore critical to improve imaging of eye disease mouse models. Here, we demonstrate that 1) rapid, quantitative 3D and 4D (time lapse) imaging of cellular and subcellular processes in the mouse eye is feasible, with and without tissue clearing, using light-sheet fluorescent microscopy (LSFM); 2) flat-mounting retinas for confocal microscopy significantly distorts tissue morphology, confirmed by quantitative correlative LSFM-Confocal imaging of vessels; 3) LSFM readily reveals new features of even well-studied eye disease mouse models, such as the oxygen-induced retinopathy (OIR) model, including a previously unappreciated ‘knotted’ morphology to pathological vascular tufts, abnormal cell motility and altered filopodia dynamics when live-imaged. We conclude that quantitative 3D/4D LSFM imaging and analysis has the potential to advance our understanding of the eye, in particular pathological, neurovascular, degenerative processes.


2019 ◽  
Author(s):  
Claudia Prahst ◽  
Parham Ashrafzadeh ◽  
Kyle Harrington ◽  
Lakshmi Venkatraman ◽  
Mark Richards ◽  
...  

AbstractAs the general population ages and the incidence of diabetes increases epidemically, more people are affected by eye diseases, such as retinopathies. It is therefore critical to improve imaging of eye disease mouse models. Here, we demonstrate that 1) rapid, quantitative 3D and 4D (time lapse) imaging of cellular and subcellular processes in the murine eye is feasible, with and without tissue clearing, using light-sheet fluorescent microscopy (LSFM) and 2) LSFM readily reveals new features of even well studied eye disease mouse models, such as the Oxygen-Induced Retinopathy (OIR) model. Through correlative LSFM-Confocal imaging we find that flat-mounting retinas for confocal microscopy significantly distorts tissue morphology. The minimized distortion with LSFM dramatically improved analysis of pathological vascular tufts in the OIR model revealing “knotted” morphologies, leading to a proposed new tuft nomenclature. Furthermore, live-imaging of OIR tuft formation revealed abnormal cell motility and altered filopodia dynamics. We conclude that quantitative 3D/4D LSFM imaging and analysis has the potential to advance our understanding of pathological processes in the eye, in particular neuro-vascular degenerative processes.


Acta Naturae ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 88-96
Author(s):  
Yu. K. Doronin ◽  
I. V. Senechkin ◽  
L. V. Hilkevich ◽  
M. A. Kurcer

In order to estimate the diversity of embryo cleavage relatives to embryo progress (blastocyst formation), time-lapse imaging data of preimplantation human embryo development were used. This retrospective study is focused on the topographic features and time parameters of the cleavages, with particular emphasis on the lengths of cleavage cycles and the genealogy of blastomeres in 2- to 8-cell human embryos. We have found that all 4-cell human embryos have four developmental variants that are based on the sequence of appearance and orientation of cleavage planes during embryo cleavage from 2 to 4 blastomeres. Each variant of cleavage shows a strong correlation with further developmental dynamics of the embryos (different cleavage cycle characteristics as well as lengths of blastomere cycles). An analysis of the sequence of human blastomere divisions allowed us to postulate that the effects of zygotic determinants are eliminated as a result of cleavage, and that, thereafter, blastomeres acquire the ability of own syntheses, regulation, polarization, formation of functional contacts, and, finally, of specific differentiation. This data on the early development of human embryos obtained using noninvasive methods complements and extend our understanding of the embryogenesis of eutherian mammals and may be applied in the practice of reproductive technologies.


2019 ◽  
Vol 1 ◽  
pp. 204-210 ◽  
Author(s):  
Alyson Wilson ◽  
Stanley Serafin ◽  
Dilan Seckiner ◽  
Rachel Berry ◽  
Xanthé Mallett

2021 ◽  
Vol 109 ◽  
pp. 103363
Author(s):  
Ben Roche ◽  
Jonathan M. Bull ◽  
Hector Marin-Moreno ◽  
Timothy G. Leighton ◽  
Ismael H. Falcon-Suarez ◽  
...  

2016 ◽  
Vol 113 (32) ◽  
pp. 8921-8926 ◽  
Author(s):  
Roland Bliem ◽  
Jessi E. S. van der Hoeven ◽  
Jan Hulva ◽  
Jiri Pavelec ◽  
Oscar Gamba ◽  
...  

Interactions between catalytically active metal particles and reactant gases depend strongly on the particle size, particularly in the subnanometer regime where the addition of just one atom can induce substantial changes in stability, morphology, and reactivity. Here, time-lapse scanning tunneling microscopy (STM) and density functional theory (DFT)-based calculations are used to study how CO exposure affects the stability of Pt adatoms and subnano clusters at the Fe3O4(001) surface, a model CO oxidation catalyst. The results reveal that CO plays a dual role: first, it induces mobility among otherwise stable Pt adatoms through the formation of Pt carbonyls (Pt1–CO), leading to agglomeration into subnano clusters. Second, the presence of the CO stabilizes the smallest clusters against decay at room temperature, significantly modifying the growth kinetics. At elevated temperatures, CO desorption results in a partial redispersion and recovery of the Pt adatom phase.


Sign in / Sign up

Export Citation Format

Share Document