scholarly journals Living together and living apart: the sexual lives of bryophytes

2016 ◽  
Vol 371 (1706) ◽  
pp. 20150535 ◽  
Author(s):  
David Haig

Haploid gametophytes of bryophytes spread by clonal growth but mate locally, within an area defined by the range of sperm movement. Rarity of establishment from spores or vegetative competition can result in unisexual populations unable to reproduce sexually. Females typically outcompete males, probably because females expend fewer resources than males on the production of gametes. Extreme sexual dimorphism—tiny males growing as epiphytes on much larger females—has evolved many times. Haploid selfing is common in bryophytes with bisexual gametophytes, and results in completely homozygous sporophytes. Spores from these sporophytes recapitulate the genotype of their single haploid parent. This process can be considered analogous to ‘asexual’ reproduction with ‘sexual’ reproduction occurring after rare outcrossing between haploid parents. Ferns also produce bisexual haploid gametophytes but, unlike bryophytes, haploid outcrossing predominates over haploid selfing. This difference is probably related to clonal growth and vegetative competition occurring in the haploid but not the diploid phase in bryophytes, but the reverse in ferns. Ferns are thereby subject to stronger inbreeding depression than bryophytes. This article is part of the themed issue ‘Weird sex: the underappreciated diversity of sexual reproduction’.

Impact ◽  
2020 ◽  
Vol 2020 (6) ◽  
pp. 73-75
Author(s):  
Akihiko Watanabe

One of the unifying traits of life on this planet is reproduction, or life's ability to make copies of itself. The mode of reproduction has evolved over time, having almost certainly begun with simple asexual reproduction when the ancestral single celled organism divided into two. Since these beginnings' life has tried out numerous strategies, and perhaps one of the most important and successful has been sexual reproduction. This form of reproduction relies on the union of gametes, otherwise known as sperm and egg. Evolutionarily, sexual reproduction allows for greater adaptive potential because the genes of two unique individuals have a chance to recombine and mix in order to produce a new individual. Unlike asexual reproduction which produces genetically-identical clones of the parent individual, sex produces offspring with novel genes and combinations of genes. Therefore, in the face of new selective pressures there is a higher chance that one of these novel genetic profiles will produce an adaptation that is advantageous in the new circumstances. Dr Akihiko Watanabe is a reproductive biologist based in the Department of Biology, Faculty of Science Yamagata University in Japan, he is currently working on three research projects; a comparative study on the signalling pathways for inducing sperm motility and acrosome reaction in amphibians, the mechanism behind the adaptive modification of sperm morphology and motility, and the origin of sperm motility initiating substance (SMIS).


2020 ◽  
Vol 63 (6) ◽  
pp. 537-540
Author(s):  
Fee O.H. Smulders ◽  
Kelcie L. Chiquillo ◽  
Demian A. Willette ◽  
Paul H. Barber ◽  
Marjolijn J.A. Christianen

AbstractThe dioecious seagrass species Halophila stipulacea reproduces mainly through fast clonal growth, underlying its invasive behavior. Here, we provide morphological evidence to show that the first findings of fruits in the Caribbean were misidentified. Consequently, H. stipulacea reproduction is likely still only asexual in the Caribbean. Therefore, we introduce an identification key of H. stipulacea reproductive structures to encourage careful identification and quantification throughout its invasive range. Until large-scale seed production in invaded habitats is reported, the apparent low rate of sexual reproduction needs to be considered in current studies investigating the invasion capacity of this species.


Genetics ◽  
2003 ◽  
Vol 164 (3) ◽  
pp. 1099-1118 ◽  
Author(s):  
Sarah P Otto

AbstractIn diploids, sexual reproduction promotes both the segregation of alleles at the same locus and the recombination of alleles at different loci. This article is the first to investigate the possibility that sex might have evolved and been maintained to promote segregation, using a model that incorporates both a general selection regime and modifier alleles that alter an individual’s allocation to sexual vs. asexual reproduction. The fate of different modifier alleles was found to depend strongly on the strength of selection at fitness loci and on the presence of inbreeding among individuals undergoing sexual reproduction. When selection is weak and mating occurs randomly among sexually produced gametes, reductions in the occurrence of sex are favored, but the genome-wide strength of selection is extremely small. In contrast, when selection is weak and some inbreeding occurs among gametes, increased allocation to sexual reproduction is expected as long as deleterious mutations are partially recessive and/or beneficial mutations are partially dominant. Under strong selection, the conditions under which increased allocation to sex evolves are reversed. Because deleterious mutations are typically considered to be partially recessive and weakly selected and because most populations exhibit some degree of inbreeding, this model predicts that higher frequencies of sex would evolve and be maintained as a consequence of the effects of segregation. Even with low levels of inbreeding, selection is stronger on a modifier that promotes segregation than on a modifier that promotes recombination, suggesting that the benefits of segregation are more likely than the benefits of recombination to have driven the evolution of sexual reproduction in diploids.


2021 ◽  
pp. 1168-1174
Author(s):  
A.A. Poroshina ◽  
◽  
D.Yu. Sherbakov ◽  

Abstract. Using a computer simulation model, we tried to investigate how the transition from sexual reproduction to asexual reproduction will affect the population of diploid organisms with a neutral character of molecular evolution. At the same time, special attention was paid to the specificity of microsatellite markers. In this paper, we develop fast and inexpensive methods for assessing the changes in populations that occur with a change in reproductive strategy.


2021 ◽  
Author(s):  
Hugh Dawson

Abstract C. demersum is a cosmopolitan submerged aquatic species that has probably already invaded most of its potential exotic range. It has the advantages of being a perennial surviving well over-winter in deeper water and by growing both by asexual reproduction of broken or complete stems and by sexual reproduction of very many seeds. It has a wide ecological tolerance and grows relatively fast. Disturbance of the water body results in increases in growth through changes in nutrient availability but also in faster dispersal around water bodies allowing greater competition with less vigorous species.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Zheng Wang ◽  
Cristina Miguel-Rojas ◽  
Francesc Lopez-Giraldez ◽  
Oded Yarden ◽  
Frances Trail ◽  
...  

ABSTRACTFungal spores germinate and undergo vegetative growth, leading to either asexual or sexual reproductive dispersal. Previous research has indicated that among developmental regulatory genes, expression is conserved across nutritional environments, whereas pathways for carbon and nitrogen metabolism appear highly responsive—perhaps to accommodate differential nutritive processing. To comprehensively investigate conidial germination and the adaptive life history decision-making underlying these two modes of reproduction, we profiled transcription ofNeurospora crassagerminating on two media: synthetic Bird medium, designed to promote asexual reproduction; and a natural maple sap medium, on which both asexual reproduction and sexual reproduction manifest. A later start to germination but faster development was observed on synthetic medium. Metabolic genes exhibited altered expression in response to nutrients—at least 34% of the genes in the genome were significantly downregulated during the first two stages of conidial germination on synthetic medium. Knockouts of genes exhibiting differential expression across development altered germination and growth rates, as well as in one case causing abnormal germination. A consensus Bayesian network of these genes indicated especially tight integration of environmental sensing, asexual and sexual development, and nitrogen metabolism on a natural medium, suggesting that in natural environments, a more dynamic and tentative balance of asexual and sexual development may be typical ofN. crassacolonies.IMPORTANCEOne of the most remarkable successes of life is its ability to flourish in response to temporally and spatially varying environments. Fungi occupy diverse ecosystems, and their sensitivity to these environmental changes often drives major fungal life history decisions, including the major switch from vegetative growth to asexual or sexual reproduction. Spore germination comprises the first and simplest stage of vegetative growth. We examined the dependence of this early life history on the nutritional environment using genome-wide transcriptomics. We demonstrated that for developmental regulatory genes, expression was generally conserved across nutritional environments, whereas metabolic gene expression was highly labile. The level of activation of developmental genes did depend on current nutrient conditions, as did the modularity of metabolic and developmental response network interactions. This knowledge is critical to the development of future technologies that could manipulate fungal growth for medical, agricultural, or industrial purposes.


2019 ◽  
Vol 15 (3) ◽  
pp. 20180871 ◽  
Author(s):  
Sutherland K. Maciver ◽  
Zisis Koutsogiannis ◽  
Alvaro de Obeso Fernández del Valle

The amoebae (and many other protists) have traditionally been considered as asexual organisms, but suspicion has been growing that these organisms are cryptically sexual or are at least related to sexual lineages. This contention is mainly based on genome studies in which the presence of ‘meiotic genes’ has been discovered. Using RNA-seq (next-generation shotgun sequencing, identifying and quantifying the RNA species in a sample), we have found that the entire repertoire of meiotic genes is expressed in exponentially growing Acanthamoeba and we argue that these so-called meiotic genes are involved in the related process of homologous recombination in this amoeba. We contend that they are only involved in meiosis in other organisms that indulge in sexual reproduction and that homologous recombination is important in asexual protists as a guard against the accumulation of mutations. We also suggest that asexual reproduction is the ancestral state.


2020 ◽  
Vol 7 ◽  
Author(s):  
Shidong Yue ◽  
Xiaomei Zhang ◽  
Shaochun Xu ◽  
Yu Zhang ◽  
Peng Zhao ◽  
...  

Seagrasses form a unique group of submerged marine angiosperms capable of both sexual and asexual reproduction. The amounts of sexual and asexual reproduction differ within some species relying on geographic location and environmental factors. Here, we studied the reproductive strategies of different geographic Zostera japonica populations, S1 and S2 at Swan Lake lagoon (SLL), and H1 and H2 at Huiquan Bay (HQB), in northern China. The duration of flowering at SLL was longer than at HQB, whereas flowering initiation at HQB occurred earlier than at SLL. In addition, the timing of seed maturation at HQB occurred earlier than at SLL. The allocation to sexual reproduction at SLL was greater than at HQB. The maximum potential seed production was greatest at S1 (22228.52 ± 8832.46 seeds ⋅ m–2), followed by S2 (21630.34 ± 9378.67 seeds ⋅ m–2), H2 (7459.60 ± 1779.33 seeds ⋅ m–2), and H1 (2821.05 ± 1280.57 seeds ⋅ m–2). The seasonal changes in total shoot density and biomass were small at HQB. There was a relatively large number of overwintering shoots at HQB because of the higher average temperature during winter. The allocation to sexual reproduction was lower than at SLL, and no seedlings were observed at HQB during our study. Thus, the population of Z. japonica at HQB was maintained by asexual reproduction. Compared with HQB, the biomass of overwintering shoots at SLL was less than 30 g dry weight ⋅ m–2. The Z. japonica at SLL relied on asexual and sexual reproduction to maintain the population. The results show the necessity of understanding local reproductive strategies before starting restoration and management projects. The study provides fundamental information and guidance for the conservation and restoration of seagrass beds.


2020 ◽  
Vol 42 (4) ◽  
pp. 403-410 ◽  
Author(s):  
Haruka Takagi ◽  
Atsushi Kurasawa ◽  
Katsunori Kimoto

Abstract Gamete release has been frequently observed in laboratory cultures of various species of planktonic foraminifera. Those observations have been taken as evidence that these organisms produce new generations exclusively by sexual reproduction. We report here the first observation of asexual reproduction in Globigerinita uvula, a small, microperforate foraminifera. The asexual phase was associated with the release of ca. 110 offspring, all of which hosted symbiotic algae that must have been passed on directly from the parent. This event was also the first observation of vertical transmission of symbionts in planktonic foraminifera. Although the trigger of the observed asexual reproduction and its frequency in nature remain unknown, our observation indicates that among the planktonic foraminifera, at least G. uvula has not abandoned the asexual phase of its life cycle.


Sign in / Sign up

Export Citation Format

Share Document