scholarly journals The gut microbiome as a driver of individual variation in cognition and functional behaviour

2018 ◽  
Vol 373 (1756) ◽  
pp. 20170286 ◽  
Author(s):  
Gabrielle L. Davidson ◽  
Amy C. Cooke ◽  
Crystal N. Johnson ◽  
John L. Quinn

Research into proximate and ultimate mechanisms of individual cognitive variation in animal populations is a rapidly growing field that incorporates physiological, behavioural and evolutionary investigations. Recent studies in humans and laboratory animals have shown that the enteric microbial community plays a central role in brain function and development. The ‘gut–brain axis’ represents a multi-directional signalling system that encompasses neurological, immunological and hormonal pathways. In particular it is tightly linked with the hypothalamic–pituitary–adrenal axis (HPA), a system that regulates stress hormone release and influences brain development and function. Experimental examination of the microbiome through manipulation of diet, infection, stress and exercise, suggests direct effects on cognition, including learning and memory. However, our understanding of these processes in natural populations is extremely limited. Here, we outline how recent advances in predominantly laboratory-based microbiome research can be applied to understanding individual differences in cognition. Experimental manipulation of the microbiome across natal and adult environments will help to unravel the interplay between cognitive variation and the gut microbial community. Focus on individual variation in the gut microbiome and cognition in natural populations will reveal new insight into the environmental and evolutionary constraints that drive individual cognitive variation. This article is part of the theme issue ‘Causes and consequences of individual differences in cognitive abilities’.

2018 ◽  
Author(s):  
Gabrielle L Davidson ◽  
Amy C. Cooke ◽  
Crystal N. Johnson ◽  
John L. Quinn

Research into proximate and ultimate mechanisms of individual cognitive variation in animal populations is a rapidly growing field that incorporates physiological, behavioural and evolutionary investigations. Recent studies in humans and lab animals have shown that the enteric microbial community plays a central role in brain development and functioning. The ‘gut-brain axis’ represents a multi-directional signalling system that encompasses neurological, immunological and hormonal pathways. In particular it is tightly linked with the hypothalamic-pituitary-adrenal axis (HPA), a system that regulates stress hormone release, and influences brain development and function. Experimental examination of the microbiome through manipulation of diet, infection, stress and exercise, suggests direct effects on cognition, including learning and memory. However, our understanding of these processes in natural populations is extremely limited. Here we outline how recent advances in predominantly laboratory-based microbiome research can be applied to understanding individual differences in cognition. Experimental manipulation of the microbiome across natal and adult environments will help to unravel the interplay between cognitive variation and the gut microbial community. Focus on individual variation in the gut microbiome and cognition in natural populations will reveal new insight into the environmental and evolutionary constraints that drive individual cognitive variation.


2020 ◽  
Vol 16 (2) ◽  
pp. 20190803
Author(s):  
David Kang ◽  
Angela E. Douglas

Most research on the nutritional significance of the gut microbiome is conducted on laboratory animals, and its relevance to wild animals is largely unknown. This study investigated the microbiome correlates of lipid content in individual wild fruit flies, Drosophila melanogaster . Lipid content varied 3.6-fold among the flies and was significantly correlated with the abundance of gut-derived bacterial DNA sequences that were assigned to genes contributing to 16 KEGG pathways. These included genes encoding sugar transporters and enzymes in glycolysis/gluconeogenesis, potentially promoting sugar consumption by the gut microbiome and, thereby, a lean fly phenotype. Furthermore, the lipid content of wild flies was significantly lower than laboratory flies, indicating that, as for some mammalian models, certain laboratory protocols might be obesogenic for Drosophila . This study demonstrates the value of research on natural populations to identify candidate microbial genes that influence ecologically important host traits.


2019 ◽  
Author(s):  
Gavin J. Fenske ◽  
Sudeep Ghimire ◽  
Linto Antony ◽  
Jane Christopher-Hennings ◽  
Joy Scaria

AbstractBacterial communities in the hindguts of pigs have a profound impact on health and disease. Yet very limited studies have been performed outside intensive swine farms to determine pig gut microbiome composition in natural populations. Feral pigs represent a unique situation where the microbiome structure can be observed outside the realm of modern agriculture. Additionally, Tamworth pigs that freely forage were included to characterize the microbiome structure of this rare breed. In this study, gut microbiome of feral and Tamworth pigs were determined using metagenomics and culturomics. Tamworth pigs are highly dominated by Bacteroidetes primarily composed of the genus Prevotella whereas feral samples were more diverse with almost equal proportions of Firmicutes and Bacteroidetes. In total, 46 distinct species were successfully isolated from 1000 colonies selected. The combination of metagenomics and culture techniques facilitated a greater retrieval of annotated genes than either method alone. Furthermore, the naturally raised Tamworth pig microbiome contained more number of antibiotic resistance genes when compared to feral pig microbiome. The single medium based pig microbiota library we report is a resource to better understand pig gut microbial ecology and function by assembling simple to complex microbiota communities in bioreactors or germfree animal models.


2018 ◽  
Vol 373 (1756) ◽  
pp. 20170280 ◽  
Author(s):  
Neeltje J. Boogert ◽  
Joah R. Madden ◽  
Julie Morand-Ferron ◽  
Alex Thornton

Individuals vary in their cognitive performance. While this variation forms the foundation of the study of human psychometrics, its broader importance is only recently being recognized. Explicitly acknowledging this individual variation found in both humans and non-human animals provides a novel opportunity to understand the mechanisms, development and evolution of cognition. The papers in this special issue highlight the growing emphasis on individual cognitive differences from fields as diverse as neurobiology, experimental psychology and evolutionary biology. Here, we synthesize this body of work. We consider the distinct challenges in quantifying individual differences in cognition and provide concrete methodological recommendations. In particular, future studies would benefit from using multiple task variants to ensure they target specific, clearly defined cognitive traits and from conducting repeated testing to assess individual consistency. We then consider how neural, genetic, developmental and behavioural factors may generate individual differences in cognition. Finally, we discuss the potential fitness consequences of individual cognitive variation and place these into an evolutionary framework with testable hypotheses. We intend for this special issue to stimulate researchers to position individual variation at the centre of the cognitive sciences. This article is part of the theme issue ‘Causes and consequences of individual differences in cognitive abilities’.


2021 ◽  
Vol 8 ◽  
Author(s):  
Meng Zhou ◽  
Jiang Zhao

Due to their large number of applications, the pesticides pose potential toxicity risks to the non-target organisms. In recent years, the studies on the toxic effects of pesticides on non-target organisms, based on their gut microbiome and metabolome, have been continuously reported. As a dense and diverse microbial community, the gut microbiota in the mammalian gut plays a key role in the maintenance of host metabolic homeostasis. The imbalance in the gut microbiota of host is closely associated with the disturbance in the host's metabolic profile. A comprehensive analysis of the changes in the gut microbiota and metabolic profile of host will help in understanding the internal mechanism of pesticide-induced toxic effects. This study reviewed the composition and function of the gut microbiota of host, as well as the analysis methods and applications of metabolomics. Importantly, the latest research on the toxic effects of the exposure of pesticide to host was reviewed on the basis of changes in their gut microbiota and metabolic profile.


2018 ◽  
Vol 41 ◽  
Author(s):  
Benjamin C. Ruisch ◽  
Rajen A. Anderson ◽  
David A. Pizarro

AbstractWe argue that existing data on folk-economic beliefs (FEBs) present challenges to Boyer & Petersen's model. Specifically, the widespread individual variation in endorsement of FEBs casts doubt on the claim that humans are evolutionarily predisposed towards particular economic beliefs. Additionally, the authors' model cannot account for the systematic covariance between certain FEBs, such as those observed in distinct political ideologies.


2019 ◽  
Vol 42 ◽  
Author(s):  
Emily F. Wissel ◽  
Leigh K. Smith

Abstract The target article suggests inter-individual variability is a weakness of microbiota-gut-brain (MGB) research, but we discuss why it is actually a strength. We comment on how accounting for individual differences can help researchers systematically understand the observed variance in microbiota composition, interpret null findings, and potentially improve the efficacy of therapeutic treatments in future clinical microbiome research.


2016 ◽  
Vol 1 (6) ◽  
pp. 47-54 ◽  
Author(s):  
Jeffrey J. DiGiovanni ◽  
Travis L. Riffle

The search for best practices in hearing aid fittings and aural rehabilitation has generally used the audiogram and function stemming from peripheral sensitivity. In recent years, however, we have learned that individuals respond differently to various hearing aid and aural rehabilitation techniques based on cognitive abilities. In this paper, we review basic concepts of working memory and the literature driving our knowledge in newer concepts of hearing aid fitting and aural rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document