scholarly journals Lost in translation: the German literature on freshwater salinization

2018 ◽  
Vol 374 (1764) ◽  
pp. 20180007 ◽  
Author(s):  
Claus-Jürgen Schulz ◽  
Miguel Cañedo-Argüelles

Human activities have globally increased and altered the ion concentration of freshwater ecosystems. The proliferation of potash mines in Germany (especially intense in the early 1900s) constitutes a good example of it. The effluents and runoff coming from potash mines led to extreme salt concentrations (e.g. 72 g l–1of total salt content, approx. 149 mS cm–1) in surrounding rivers and streams, causing ecosystem degradation (e.g. massive algal blooms and fish kills). This promoted scientific research that was mostly published in German, thereby being neglected by the wide scientific community. Here, the findings of the German literature on freshwater salinization are discussed in the light of current knowledge. German studies revealed that at similar ion concentrations potassium (K+) can be the most toxic ion to freshwater organisms, whereas calcium (Ca2+) could have a toxicity ameliorating effect. Also, they showed that salinization could lead to biodiversity loss, major shifts in the composition of aquatic communities (e.g. dominance of salt-tolerant algae, proliferation of invasive species) and alter organic matter processing. The biological degradation caused by freshwater salinization related to potash mining has important management implications, e.g. it could prevent many European rivers and streams from reaching the good ecological status demanded by the Water Framework Directive. Within this context, German publications show several examples of salinity thresholds and biological indices that could be useful to monitor and regulate salinization (i.e. developing legally enforced salinity and ion-specific standards). They also provide potential management techniques (i.e. brine collection and disposal) and some estimates of the economic costs of freshwater salinization. Overall, the German literature on freshwater salinization provides internationally relevant information that has rarely been cited by the English literature. We suggest that the global editorial and scientific community should take action to make important findings published in non-English literature more widely available.This article is part of the theme issue ‘Salt in freshwaters: causes, ecological consequences and future prospects’.

2021 ◽  
pp. 1-4
Author(s):  
Kay Scheffler ◽  
Oliver W. Hakenberg ◽  
Peter Petros

A serendipitous cure in a 73-year-old woman of Hunner’s ulcer, urge, nocturia, apical prolapse by a tissue fixation system tensioned minisling (TFS) which reinforced the cardinal, and uterosacral ligaments (USLs) led us to analyse the relationship between Hunner’s ulcer and known pain conditions associated with USL laxity. The original intention was to cure the “posterior fornix syndrome” (PFS), uterine prolapse, and associated pain and bladder symptoms by USL repair. A speculum inserted preoperatively into the posterior fornix alleviated pain and urge symptoms, by mechanically supporting USLs. Hunner’s ulcer, along with pain and other PFS symptoms were cured by USL repair. The concept of USL laxity causing chronic pelvic pain and bladder problems is not new. It was published in the German literature by Heinrich Martius in 1938 and by Petros in the English literature in 1993. These findings raise important questions. As PFS symptoms are identical with those of interstitial cystitis (IC), are PFS and IC similar conditions? If so, then patients with IC who have a positive speculum test are at least theoretically, potentially curable by USL repair. These questions need to be explored.


2015 ◽  
Vol 112 (22) ◽  
pp. 7045-7050 ◽  
Author(s):  
Andrea Giometto ◽  
Florian Altermatt ◽  
Amos Maritan ◽  
Roman Stocker ◽  
Andrea Rinaldo

Phototaxis, the process through which motile organisms direct their swimming toward or away from light, is implicated in key ecological phenomena (including algal blooms and diel vertical migration) that shape the distribution, diversity, and productivity of phytoplankton and thus energy transfer to higher trophic levels in aquatic ecosystems. Phototaxis also finds important applications in biofuel reactors and microbiopropellers and is argued to serve as a benchmark for the study of biological invasions in heterogeneous environments owing to the ease of generating stochastic light fields. Despite its ecological and technological relevance, an experimentally tested, general theoretical model of phototaxis seems unavailable to date. Here, we present accurate measurements of the behavior of the algaEuglena graciliswhen exposed to controlled light fields. Analysis ofE. gracilis’ phototactic accumulation dynamics over a broad range of light intensities proves that the classic Keller–Segel mathematical framework for taxis provides an accurate description of both positive and negative phototaxis only when phototactic sensitivity is modeled by a generalized “receptor law,” a specific nonlinear response function to light intensity that drives algae toward beneficial light conditions and away from harmful ones. The proposed phototactic model captures the temporal dynamics of both cells’ accumulation toward light sources and their dispersion upon light cessation. The model could thus be of use in integrating models of vertical phytoplankton migrations in marine and freshwater ecosystems, and in the design of bioreactors.


Author(s):  
Guotao Peng ◽  
Zhengqiu Fan ◽  
Xiangrong Wang ◽  
Chen Chen

<p>The frequent outbreak of cyanobacterial blooms has become a worldwide phenomenon in freshwater ecosystems. Studies have elucidated the close relationship between harmful algal blooms and nutrient contents, including the loading of nitrogen and the ratios of nitrogen (N) and phosphorus (P). In this study, the effect of inorganic (nitrate and ammonium) and organic (urea) nitrogen at varied N/P ratios on the <em>Microcystis</em> <em>aeruginosa</em> FACHB-905 accumulation and photosynthesis was investigated.  The optimal NO<sub>3</sub>/P in this study were 30~50 indicated by the cell abundance (4.1×10<sup>6</sup>/mL), pigment concentration (chlorophyll a 3.1 mg/L,  phycocyanin 8.3mg/L), and chlorophyll fluorescence parameters (<em>rETR</em>, <em>E<sub>k</sub>, α, φPSII</em> and <em>F<sub>v</sub>/F<sub>m</sub> </em>values), while too high NO<sub>3</sub>-N (N/P=100:1) would cause an intracellular nitrate inhibition, leading to a decrease of photosynthetic activity. In addition, low concentration of NH<sub>4</sub>-N (N/P=4:1) would favor the <em>M. aeruginosa </em>growth and photosynthesis, and high NH<sub>4</sub>/P ratio (&gt;16) would rise the ammonium toxicity of algal cells and affect the N assimilation. In urea treatments, <em>M. aeruginosa </em>responded similarly to the NH<sub>4</sub>-N treatments both in growth curves and pigment contents, and the favorable N/P ratio was between 16~30, suggested by the chlorophyll fluorescence parameters. The results demonstrated that the various chemical forms of N and N/P ratios have a significant impact on <em>Microcystis</em> abundance and photosynthesis. More work is needed to figure out the mechanism of nitrogen utilization by <em>Microcystis</em> and  the photosynthetic response to nutrient stress at the molecular level.</p>


2018 ◽  
Vol 374 (1764) ◽  
pp. 20180019 ◽  
Author(s):  
Matthew S. Schuler ◽  
Miguel Cañedo-Argüelles ◽  
William D. Hintz ◽  
Brenda Dyack ◽  
Sebastian Birk ◽  
...  

Anthropogenic activities such as mining, agriculture and industrial wastes have increased the rate of salinization of freshwater ecosystems around the world. Despite the known and probable consequences of freshwater salinization, few consequential regulatory standards and management procedures exist. Current regulations are generally inadequate because they are regionally inconsistent, lack legal consequences and have few ion-specific standards. The lack of ion-specific standards is problematic, because each anthropogenic source of freshwater salinization is associated with a distinct set of ions that can present unique social and economic costs. Additionally, the environmental and toxicological consequences of freshwater salinization are often dependent on the occurrence, concentration and ratios of specific ions. Therefore, to protect fresh waters from continued salinization, discrete, ion-specific management and regulatory strategies should be considered for each source of freshwater salinization, using data from standardized, ion-specific monitoring practices. To develop comprehensive monitoring, regulatory, and management guidelines, we recommend the use of co-adaptive, multi-stakeholder approaches that balance environmental, social, and economic costs and benefits associated with freshwater salinization. This article is part of the theme issue ‘Salt in freshwaters: causes, ecological consequences and future prospects’.


2021 ◽  
pp. 323-340
Author(s):  
Sebastian Höss ◽  
Walter Traunspurger

Abstract This chapter, after a general introduction to quality assessments of freshwater habitats, reviews the use of freshwater nematodes as in situ bioindicators, including in monitoring the ecological quality of freshwater habitats. By drawing on studies of nematode communities in unpolluted and polluted habitats as examples, it highlights both the different methods used to assess the quality of freshwater ecosystems and their applications. A focus of the chapter is the development of a new index that uses freshwater nematodes to assess chemically induced changes in the ecological status of freshwater habitats, the NemaSPEAR[%]-index (Nematode SPEcies At Risk).


Author(s):  
Ruben Ladrera ◽  
Miguel Cañedo-Argüelles ◽  
Narcís Prat

Potash mining is significantly increasing the salt concentration of rivers and streams due to lixiviates coming from the mine tailings. In the present study, we have focused on the middle Llobregat basin (northeast Spain), where an important potash mining activity exists from the beginning of the XX century. Up to 50 million tonnes of saline waste have been disposed in the area, mainly composed of sodium chloride. We assessed the ecological status of streams adjacent to the mines by studying different physicochemical and hydromorphological variables, as well as aquatic macroinvertebrates. We found extraordinary high values of salinity in the studied streams, reaching conductivities up to 132.4 mS/cm. Salt-polluted streams were characterized by a deterioration of the riparian vegetation and the fluvial habitat. Both macroinvertebrate richness and abundance decreased with increasing salinity. In the most polluted stream only two families of macroinvertebrates were found: Ephydridae and Ceratopogonidae. According to the biotic indices IBMWP and IMMi-T, none of the sites met the requirements of the Water Framework Directive (WFD; i.e., good ecological status). Overall, we can conclude that potash-mining activities have the potential to cause severe ecological damage to their surrounding streams. This is mainly related to an inadequate management of the mine tailings, leading to highly saline runoff and percolates entering surface waters. Thus, we urge water managers and policy makers to take action to prevent, detect and remediate salt pollution of rivers and streams in potash mining areas.


Sign in / Sign up

Export Citation Format

Share Document