scholarly journals Mitochondrial retrograde signalling in neurological disease

2020 ◽  
Vol 375 (1801) ◽  
pp. 20190415 ◽  
Author(s):  
Lucy Granat ◽  
Rachel J. Hunt ◽  
Joseph M. Bateman

Neuronal mitochondrial dysfunction causes primary mitochondrial diseases and likely contributes to neurodegenerative diseases including Parkinson's and Alzheimer's disease. Mitochondrial dysfunction has also been documented in neurodevelopmental disorders such as tuberous sclerosis complex and autism spectrum disorder. Only symptomatic treatments exist for neurodevelopmental disorders, while neurodegenerative diseases are largely untreatable. Altered mitochondrial function activates mitochondrial retrograde signalling pathways, which enable signalling to the nucleus to reprogramme nuclear gene expression. In this review, we discuss the role of mitochondrial retrograde signalling in neurological diseases. We summarize how mitochondrial dysfunction contributes to neurodegenerative disease and neurodevelopmental disorders. Mitochondrial signalling mechanisms that have relevance to neurological disease are discussed. We then describe studies documenting retrograde signalling pathways in neurons and glia, and in animal models of neuronal mitochondrial dysfunction and neurological disease. Finally, we suggest how specific retrograde signalling pathways can be targeted to develop novel treatments for neurological diseases. This article is part of the theme issue ‘Retrograde signalling from endosymbiotic organelles’.

Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1098
Author(s):  
Deborah Cory-Slechta ◽  
Marissa Sobolewski ◽  
Günter Oberdörster

Increasing evidence links air pollution (AP) exposure to effects on the central nervous system structure and function. Particulate matter AP, especially the ultrafine (nanoparticle) components, can carry numerous metal and trace element contaminants that can reach the brain in utero and after birth. Excess brain exposure to either essential or non-essential elements can result in brain dyshomeostasis, which has been implicated in both neurodevelopmental disorders (NDDs; autism spectrum disorder, schizophrenia, and attention deficit hyperactivity disorder) and neurodegenerative diseases (NDGDs; Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis). This review summarizes the current understanding of the extent to which the inhalational or intranasal instillation of metals reproduces in vivo the shared features of NDDs and NDGDs, including enlarged lateral ventricles, alterations in myelination, glutamatergic dysfunction, neuronal cell death, inflammation, microglial activation, oxidative stress, mitochondrial dysfunction, altered social behaviors, cognitive dysfunction, and impulsivity. Although evidence is limited to date, neuronal cell death, oxidative stress, and mitochondrial dysfunction are reproduced by numerous metals. Understanding the specific contribution of metals/trace elements to this neurotoxicity can guide the development of more realistic animal exposure models of human AP exposure and consequently lead to a more meaningful approach to mechanistic studies, potential intervention strategies, and regulatory requirements.


2020 ◽  
Vol 375 (1801) ◽  
pp. 20190410 ◽  
Author(s):  
Yan Wang ◽  
Jennifer Selinski ◽  
Chunli Mao ◽  
Yanqiao Zhu ◽  
Oliver Berkowitz ◽  
...  

Retrograde signalling refers to the regulation of nuclear gene expression in response to functional changes in organelles. In plants, the two energy-converting organelles, mitochondria and chloroplasts, are tightly coordinated to balance their activities. Although our understanding of components involved in retrograde signalling has greatly increased in the last decade, studies on the regulation of the two organelle signalling pathways have been largely independent. Thus, the mechanism of how mitochondrial and chloroplastic retrograde signals are integrated is largely unknown. Here, we summarize recent findings on the function of mitochondrial signalling components and their links to chloroplast retrograde responses. From this, a picture emerges showing that the major regulators are integrators of both organellar retrograde signalling pathways. This article is part of the theme issue ‘Retrograde signalling from endosymbiotic organelles’.


2019 ◽  
Author(s):  
Kristin Habermann ◽  
Bhavika Tiwari ◽  
Maria Krantz ◽  
Stephan O. Adler ◽  
Edda Klipp ◽  
...  

SummaryChloroplast perturbations activate retrograde signalling pathways causing dynamic changes of gene expression. Besides transcriptional control of gene expression different classes of small non-coding RNAs (sRNAs) act in gene expression control, but comprehensive analyses regarding their role in retrograde signalling is lacking. We performed sRNA profiling in response to norflurazon (NF) that provokes retrograde signals in A. thaliana wild type and the two retrograde signalling mutants gun1 and gun5. The RNA samples were also used for mRNA and long non-coding RNA (lncRNA) profiling to link altered sRNA levels to changes of their cognate target RNAs. We identified 122 sRNAs from all known sRNA classes that were responsive to NF in wild type. Strikingly, 140 and 213 sRNAs were found to be differentially regulated in both mutants indicating a retrograde control of these sRNAs. Concomitant with the changes in sRNA expression we detected about 1500 differentially expressed mRNAs in the NF treated wild type and around 900 and 1400 mRNAs that were differentially regulated in the gun1 and gun5 mutant with a high proportion (~30%) of genes encoding plastid proteins. Furthermore, around 20% of predicted miRNA targets code for plastid localised proteins. The analyses of sRNA-target pairs identified pairs with an anticorrelated expression as well pairs showing other expressional relations pointing to a role of sRNAs in balancing transcriptional changes upon retrograde signals. Based on the comprehensive changes in sRNA expression we assume a considerable impact of sRNAs in retrograde-dependent transcriptional changes to adjust plastidic and nuclear gene expression.Significance statementPerturbations of plastid functions trigger retrograde signalling to adjust plastidic and nuclear gene expression, however, the role of small non-coding RNAs acting as regulators in these pathways is not well understood. We analysed small non-coding RNA expression in response to retrograde signals in A. thaliana wild type and two retrograde signalling mutants and identified members of all known small non-coding RNA classes pointing to a functional role of these RNA classes in retrograde pathways.


2019 ◽  
Vol 63 (8-9-10) ◽  
pp. 497-508 ◽  
Author(s):  
Xavier G. Pearce ◽  
Sarah J. Annesley ◽  
Paul R. Fisher

The unicellular slime mould Dictyostelium discoideum is a valuable eukaryotic model organism in the study of mitochondrial biology and disease. As a member of the Amoebozoa, a sister clade to the animals and fungi, Dictyostelium mitochondrial biology shares commonalities with these organisms, but also exhibits some features of plants. As such it has made significant contributions to the study of eukaryotic mitochondrial biology. This review provides an overview of the advances in mitochondrial biology made by the study of Dictyostelium and examines several examples where Dictyostelium has and will contribute to the understanding of mitochondrial disease. The study of Dictyostelium’s mitochondrial biology has contributed to the understanding of mitochondrial genetics, transcription, protein import, respiration, morphology and trafficking, and the role of mitochondria in cellular differentiation. Dictyostelium is also proving to be a versatile model organism in the study both of classical mitochondrial disease e.g. Leigh syndrome, and in mitochondria-associated neurodegenerative diseases like Parkinson’s disease. The study of mitochondrial diseases presents a unique challenge due to the cryptic nature of their genotype-phenotype relationship. The use of Dictyostelium can contribute to resolving this problem by providing a genetically tractable, haploid eukaryotic organism with a suite of readily characterised phenotype readouts of cellular signalling pathways. Dictyostelium has provided insight into the signalling pathways involved in multiple neurodegenerative diseases and will continue to provide a significant contribution to the understanding of mitochondrial biology and disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Keith A. Kwan Cheung ◽  
Murray D. Mitchell ◽  
Helen S. Heussler

Neurodevelopmental and neuropsychiatric disorders (such as autism spectrum disorder) have broad health implications for children, with no definitive cure for the vast majority of them. However, recently medicinal cannabis has been successfully trialled as a treatment to manage many of the patients' symptoms and improve quality of life. The cannabinoid cannabidiol, in particular, has been reported to be safe and well-tolerated with a plethora of anticonvulsant, anxiolytic and anti-inflammatory properties. Lately, the current consensus is that the endocannabinoid system is a crucial factor in neural development and health; research has found evidence that there are a multitude of signalling pathways involving neurotransmitters and the endocannabinoid system by which cannabinoids could potentially exert their therapeutic effects. A better understanding of the cannabinoids' mechanisms of action should lead to improved treatments for neurodevelopmental disorders.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Keren K. Griffiths ◽  
Richard J. Levy

Autism spectrum disorder (ASD), the fastest growing developmental disability in the United States, represents a group of neurodevelopmental disorders characterized by impaired social interaction and communication as well as restricted and repetitive behavior. The underlying cause of autism is unknown and therapy is currently limited to targeting behavioral abnormalities. Emerging studies suggest a link between mitochondrial dysfunction and ASD. Here, we review the evidence demonstrating this potential connection. We focus specifically on biochemical links, genetic-based associations, non-energy related mechanisms, and novel therapeutic strategies.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Matan Sorek ◽  
Walaa Oweis ◽  
Malka Nissim-Rafinia ◽  
Moria Maman ◽  
Shahar Simon ◽  
...  

Abstract Background Many neurodegenerative diseases develop only later in life, when cells in the nervous system lose their structure or function. In many forms of neurodegenerative diseases, this late-onset phenomenon remains largely unexplained. Results Analyzing single-cell RNA sequencing from Alzheimer’s disease (AD) and Huntington’s disease (HD) patients, we find increased transcriptional heterogeneity in disease-state neurons. We hypothesize that transcriptional heterogeneity precedes neurodegenerative disease pathologies. To test this idea experimentally, we use juvenile forms (72Q; 180Q) of HD iPSCs, differentiate them into committed neuronal progenitors, and obtain single-cell expression profiles. We show a global increase in gene expression variability in HD. Autophagy genes become more stable, while energy and actin-related genes become more variable in the mutant cells. Knocking down several differentially variable genes results in increased aggregate formation, a pathology associated with HD. We further validate the increased transcriptional heterogeneity in CHD8+/− cells, a model for autism spectrum disorder. Conclusions Overall, our results suggest that although neurodegenerative diseases develop over time, transcriptional regulation imbalance is present already at very early developmental stages. Therefore, an intervention aimed at this early phenotype may be of high diagnostic value.


2020 ◽  
Author(s):  
Laurie John Hannigan ◽  
Ragna Bugge Askeland ◽  
Helga Ask ◽  
Martin Tesli ◽  
Elizabeth Corfield ◽  
...  

BackgroundEarly developmental milestones, such as the age at first walking or talking, are associated with later diagnoses of neurodevelopmental disorders, but the relationship to genetic risk for neurodevelopmental disorders are unknown. Here, we investigate associations between genetic liability to autism spectrum disorder (autism), attention deficit hyperactivity disorder (ADHD), and schizophrenia and attainment of early-life language and motor development milestones.MethodsWe use data from a genotyped sub-set (N = 15 205) of children in the Norwegian Mother, Father and Child Cohort Study (MoBa). In this sample, we calculate polygenic scores for autism; ADHD and schizophrenia and predict maternal reports of children’s age at first walking and talking, motor delays at 18 months, language delays at 3 years, and a generalized measure of concerns about development. We use linear and probit regression models in a multi-group framework to test for sex differences.ResultsADHD polygenic scores predicted earlier walking age in both males and females (β=-0.037, pFDR=0.001), and earlier first use of sentences (β=-0.087, pFDR=0.032) but delayed language development at 3 years in females only (β=0.194, pFDR=0.001). Additionally, we found evidence that autism polygenic scores were associated with later walking (β=0.027, pFDR=0.024) and motor delays at 18 months (β = 0.065, pFDR=0.028). Schizophrenia polygenic scores were associated with a measure of general concerns about development at 3 years in females only (β=0.132, pFDR=0.024).ConclusionsGenetic liabilities for neurodevelopmental disorders show some specific associations with measures of early motor and language development in the general population, including the age at which children first walk and talk. Associations are generally small and occasionally in unexpected directions. Sex differences are evident in some instances, but clear patterns across different polygenic scores and outcomes are hard to discern. These findings suggest that genetic susceptibility for neurodevelopmental disorders is manifested in the timing of developmental milestones in infancy.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Vaibhav S. Marde ◽  
Prerna L. Tiwari ◽  
Nitu L. Wankhede ◽  
Brijesh G. Taksande ◽  
Aman B. Upaganlawar ◽  
...  

Abstract Background Over the last decade, aggregating evidences suggested that there is a causative link between mutation in gene associated with mitochondrial dysfunction and development of several neurodegenerative disorders. Main text Recent structural and functional studies associated with mitochondrial genes have shown that mitochondrial abnormalities possibly lead to mitochondrial dysfunction. Several studies on animal models of neurodegenerative diseases and mitochondrial genes have provided compelling evidence that mitochondria is involved in the initiation as well as progression of diseases such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), and Friedreich ataxia (FA). Conclusion In this mini-review, we have discussed the different etiologic and pathogenesis connected with the mitochondrial dysfunction and relevant neurodegenerative diseases that underlie the dominant part of mitochondrial genes in the disease development and its progress.


Sign in / Sign up

Export Citation Format

Share Document