scholarly journals The evolution of brain architectures for predictive coding and active inference

Author(s):  
Giovanni Pezzulo ◽  
Thomas Parr ◽  
Karl Friston

This article considers the evolution of brain architectures for predictive processing. We argue that brain mechanisms for predictive perception and action are not late evolutionary additions of advanced creatures like us. Rather, they emerged gradually from simpler predictive loops (e.g. autonomic and motor reflexes) that were a legacy from our earlier evolutionary ancestors—and were key to solving their fundamental problems of adaptive regulation. We characterize simpler-to-more-complex brains formally, in terms of generative models that include predictive loops of increasing hierarchical breadth and depth. These may start from a simple homeostatic motif and be elaborated during evolution in four main ways: these include the multimodal expansion of predictive control into an allostatic loop; its duplication to form multiple sensorimotor loops that expand an animal's behavioural repertoire; and the gradual endowment of generative models with hierarchical depth (to deal with aspects of the world that unfold at different spatial scales) and temporal depth (to select plans in a future-oriented manner). In turn, these elaborations underwrite the solution to biological regulation problems faced by increasingly sophisticated animals. Our proposal aligns neuroscientific theorising—about predictive processing—with evolutionary and comparative data on brain architectures in different animal species. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.

2019 ◽  
Vol 28 (4) ◽  
pp. 225-239 ◽  
Author(s):  
Maxwell JD Ramstead ◽  
Michael D Kirchhoff ◽  
Karl J Friston

The aim of this article is to clarify how best to interpret some of the central constructs that underwrite the free-energy principle (FEP) – and its corollary, active inference – in theoretical neuroscience and biology: namely, the role that generative models and variational densities play in this theory. We argue that these constructs have been systematically misrepresented in the literature, because of the conflation between the FEP and active inference, on the one hand, and distinct (albeit closely related) Bayesian formulations, centred on the brain – variously known as predictive processing, predictive coding or the prediction error minimisation framework. More specifically, we examine two contrasting interpretations of these models: a structural representationalist interpretation and an enactive interpretation. We argue that the structural representationalist interpretation of generative and recognition models does not do justice to the role that these constructs play in active inference under the FEP. We propose an enactive interpretation of active inference – what might be called enactive inference. In active inference under the FEP, the generative and recognition models are best cast as realising inference and control – the self-organising, belief-guided selection of action policies – and do not have the properties ascribed by structural representationalists.


2019 ◽  
Author(s):  
Beren Millidge

Initial and preliminary implementations of predictive processing and active inference models are presented. These include the baseline hierarchical predictive coding models of (Friston 2003, 2005), and dynamical predictive coding models using generalised coordinates (Friston 2008, 2010, Buckley 2017). Additionally, we re-implement and experiment with the active inference thermostat presented in (Buckley 2017) and also implement an active inference agent with a hierarchical predictive coding perceptual model on the more challenging cart-pole task from OpanAI gym. We discuss the initial performance, capabilities, and limitations of these models in their preliminary stages and consider how they might be further scaled up to tackle more challenging tasks.


2016 ◽  
Vol 13 (122) ◽  
pp. 20160616 ◽  
Author(s):  
Léo Pio-Lopez ◽  
Ange Nizard ◽  
Karl Friston ◽  
Giovanni Pezzulo

Active inference is a general framework for perception and action that is gaining prominence in computational and systems neuroscience but is less known outside these fields. Here, we discuss a proof-of-principle implementation of the active inference scheme for the control or the 7-DoF arm of a (simulated) PR2 robot. By manipulating visual and proprioceptive noise levels, we show under which conditions robot control under the active inference scheme is accurate. Besides accurate control, our analysis of the internal system dynamics (e.g. the dynamics of the hidden states that are inferred during the inference) sheds light on key aspects of the framework such as the quintessentially multimodal nature of control and the differential roles of proprioception and vision. In the discussion, we consider the potential importance of being able to implement active inference in robots. In particular, we briefly review the opportunities for modelling psychophysiological phenomena such as sensory attenuation and related failures of gain control, of the sort seen in Parkinson's disease. We also consider the fundamental difference between active inference and optimal control formulations, showing that in the former the heavy lifting shifts from solving a dynamical inverse problem to creating deep forward or generative models with dynamics, whose attracting sets prescribe desired behaviours.


2020 ◽  
Vol 1 (I) ◽  
pp. 1-16 ◽  
Author(s):  
Jakub Limanowski ◽  
Karl Friston

In this paper, we address reports of “selfless” experiences from the perspective of active inference and predictive processing. Our argument builds upon grounding self-modelling in active inference as action planning and precision control within deep generative models – thus establishing a link between computational mechanisms and phenomenal selfhood. We propose that “selfless” experiences can be interpreted as (rare) cases in which normally congruent processes of computational and phenomenal self-modelling diverge in an otherwise conscious system. We discuss two potential mechanisms – within the Bayesian mechanics of active inference – that could lead to such a divergence by attenuating the experience of selfhood: “self-flattening” via reduction in the depth of active inference and “self-attenuation” via reduction of the expected precision of self-evidence.


2021 ◽  
Vol 33 (5) ◽  
pp. 1402-1432
Author(s):  
Alejandra Ciria ◽  
Guido Schillaci ◽  
Giovanni Pezzulo ◽  
Verena V. Hafner ◽  
Bruno Lara

Abstract Predictive processing has become an influential framework in cognitive sciences. This framework turns the traditional view of perception upside down, claiming that the main flow of information processing is realized in a top-down, hierarchical manner. Furthermore, it aims at unifying perception, cognition, and action as a single inferential process. However, in the related literature, the predictive processing framework and its associated schemes, such as predictive coding, active inference, perceptual inference, and free-energy principle, tend to be used interchangeably. In the field of cognitive robotics, there is no clear-cut distinction on which schemes have been implemented and under which assumptions. In this letter, working definitions are set with the main aim of analyzing the state of the art in cognitive robotics research working under the predictive processing framework as well as some related nonrobotic models. The analysis suggests that, first, research in both cognitive robotics implementations and nonrobotic models needs to be extended to the study of how multiple exteroceptive modalities can be integrated into prediction error minimization schemes. Second, a relevant distinction found here is that cognitive robotics implementations tend to emphasize the learning of a generative model, while in nonrobotics models, it is almost absent. Third, despite the relevance for active inference, few cognitive robotics implementations examine the issues around control and whether it should result from the substitution of inverse models with proprioceptive predictions. Finally, limited attention has been placed on precision weighting and the tracking of prediction error dynamics. These mechanisms should help to explore more complex behaviors and tasks in cognitive robotics research under the predictive processing framework.


2020 ◽  
Vol 43 ◽  
Author(s):  
Martina G. Vilas ◽  
Lucia Melloni

Abstract To become a unifying theory of brain function, predictive processing (PP) must accommodate its rich representational diversity. Gilead et al. claim such diversity requires a multi-process theory, and thus is out of reach for PP, which postulates a universal canonical computation. We contend this argument and instead propose that PP fails to account for the experiential level of representations.


Author(s):  
Lauren Swiney

Over the last thirty years the comparator hypothesis has emerged as a prominent account of inner speech pathology. This chapter discusses a number of cognitive accounts broadly derived from this approach, highlighting the existence of two importantly distinct notions of inner speech in the literature; one as a prediction in the absence of sensory input, the other as an act with sensory consequences that are themselves predicted. Under earlier frameworks in which inner speech is described in the context of classic models of motor control, I argue that these two notions may be compatible, providing two routes to inner speech pathology. Under more recent accounts grounded in the architecture of Bayesian predictive processing, I argue that “active inference” approaches to action generation pose serious challenges to the plausibility of the latter notion of inner speech, while providing the former notion with rich explanatory possibilities for inner speech pathology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Betina Korka ◽  
Erich Schröger ◽  
Andreas Widmann

AbstractOur brains continuously build and update predictive models of the world, sources of prediction being drawn for example from sensory regularities and/or our own actions. Yet, recent results in the auditory system indicate that stochastic regularities may not be easily encoded when a rare medium pitch deviant is presented between frequent high and low pitch standard sounds in random order, as reflected in the lack of sensory prediction error event-related potentials [i.e., mismatch negativity (MMN)]. We wanted to test the implication of the predictive coding theory that predictions based on higher-order generative models—here, based on action intention, are fed top-down in the hierarchy to sensory levels. Participants produced random sequences of high and low pitch sounds by button presses in two conditions: In a “specific” condition, one button produced high and the other low pitch sounds; in an “unspecific” condition, both buttons randomly produced high or low-pitch sounds. Rare medium pitch deviants elicited larger MMN and N2 responses in the “specific” compared to the “unspecific” condition, despite equal sound probabilities. These results thus demonstrate that action-effect predictions can boost stochastic regularity-based predictions and engage higher-order deviance detection processes, extending previous notions on the role of action predictions at sensory levels.


Sign in / Sign up

Export Citation Format

Share Document