Attenuating oneself

2020 ◽  
Vol 1 (I) ◽  
pp. 1-16 ◽  
Author(s):  
Jakub Limanowski ◽  
Karl Friston

In this paper, we address reports of “selfless” experiences from the perspective of active inference and predictive processing. Our argument builds upon grounding self-modelling in active inference as action planning and precision control within deep generative models – thus establishing a link between computational mechanisms and phenomenal selfhood. We propose that “selfless” experiences can be interpreted as (rare) cases in which normally congruent processes of computational and phenomenal self-modelling diverge in an otherwise conscious system. We discuss two potential mechanisms – within the Bayesian mechanics of active inference – that could lead to such a divergence by attenuating the experience of selfhood: “self-flattening” via reduction in the depth of active inference and “self-attenuation” via reduction of the expected precision of self-evidence.

2019 ◽  
Vol 28 (4) ◽  
pp. 225-239 ◽  
Author(s):  
Maxwell JD Ramstead ◽  
Michael D Kirchhoff ◽  
Karl J Friston

The aim of this article is to clarify how best to interpret some of the central constructs that underwrite the free-energy principle (FEP) – and its corollary, active inference – in theoretical neuroscience and biology: namely, the role that generative models and variational densities play in this theory. We argue that these constructs have been systematically misrepresented in the literature, because of the conflation between the FEP and active inference, on the one hand, and distinct (albeit closely related) Bayesian formulations, centred on the brain – variously known as predictive processing, predictive coding or the prediction error minimisation framework. More specifically, we examine two contrasting interpretations of these models: a structural representationalist interpretation and an enactive interpretation. We argue that the structural representationalist interpretation of generative and recognition models does not do justice to the role that these constructs play in active inference under the FEP. We propose an enactive interpretation of active inference – what might be called enactive inference. In active inference under the FEP, the generative and recognition models are best cast as realising inference and control – the self-organising, belief-guided selection of action policies – and do not have the properties ascribed by structural representationalists.


Author(s):  
Giovanni Pezzulo ◽  
Thomas Parr ◽  
Karl Friston

This article considers the evolution of brain architectures for predictive processing. We argue that brain mechanisms for predictive perception and action are not late evolutionary additions of advanced creatures like us. Rather, they emerged gradually from simpler predictive loops (e.g. autonomic and motor reflexes) that were a legacy from our earlier evolutionary ancestors—and were key to solving their fundamental problems of adaptive regulation. We characterize simpler-to-more-complex brains formally, in terms of generative models that include predictive loops of increasing hierarchical breadth and depth. These may start from a simple homeostatic motif and be elaborated during evolution in four main ways: these include the multimodal expansion of predictive control into an allostatic loop; its duplication to form multiple sensorimotor loops that expand an animal's behavioural repertoire; and the gradual endowment of generative models with hierarchical depth (to deal with aspects of the world that unfold at different spatial scales) and temporal depth (to select plans in a future-oriented manner). In turn, these elaborations underwrite the solution to biological regulation problems faced by increasingly sophisticated animals. Our proposal aligns neuroscientific theorising—about predictive processing—with evolutionary and comparative data on brain architectures in different animal species. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.


Author(s):  
Lauren Swiney

Over the last thirty years the comparator hypothesis has emerged as a prominent account of inner speech pathology. This chapter discusses a number of cognitive accounts broadly derived from this approach, highlighting the existence of two importantly distinct notions of inner speech in the literature; one as a prediction in the absence of sensory input, the other as an act with sensory consequences that are themselves predicted. Under earlier frameworks in which inner speech is described in the context of classic models of motor control, I argue that these two notions may be compatible, providing two routes to inner speech pathology. Under more recent accounts grounded in the architecture of Bayesian predictive processing, I argue that “active inference” approaches to action generation pose serious challenges to the plausibility of the latter notion of inner speech, while providing the former notion with rich explanatory possibilities for inner speech pathology.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 198
Author(s):  
Stephen Fox

Active inference is a physics of life process theory of perception, action and learning that is applicable to natural and artificial agents. In this paper, active inference theory is related to different types of practice in social organization. Here, the term social organization is used to clarify that this paper does not encompass organization in biological systems. Rather, the paper addresses active inference in social organization that utilizes industrial engineering, quality management, and artificial intelligence alongside human intelligence. Social organization referred to in this paper can be in private companies, public institutions, other for-profit or not-for-profit organizations, and any combination of them. The relevance of active inference theory is explained in terms of variational free energy, prediction errors, generative models, and Markov blankets. Active inference theory is most relevant to the social organization of work that is highly repetitive. By contrast, there are more challenges involved in applying active inference theory for social organization of less repetitive endeavors such as one-of-a-kind projects. These challenges need to be addressed in order for active inference to provide a unifying framework for different types of social organization employing human and artificial intelligence.


2021 ◽  
Vol 12 ◽  
Author(s):  
Joerg Fingerhut

This paper argues that the still-emerging paradigm of situated cognition requires a more systematic perspective on media to capture the enculturation of the human mind. By virtue of being media, cultural artifacts present central experiential models of the world for our embodied minds to latch onto. The paper identifies references to external media within embodied, extended, enactive, and predictive approaches to cognition, which remain underdeveloped in terms of the profound impact that media have on our mind. To grasp this impact, I propose an enactive account of media that is based on expansive habits as media-structured, embodied ways of bringing forth meaning and new domains of values. We apply such habits, for instance, when seeing a picture or perceiving a movie. They become established through a process of reciprocal adaptation between media artifacts and organisms and define the range of viable actions within such a media ecology. Within an artifactual habit, we then become attuned to a specific media work (e.g., a TV series, a picture, a text, or even a city) that engages us. Both the plurality of habits and the dynamical adjustments within a habit require a more flexible neural architecture than is addressed by classical cognitive neuroscience. To detail how neural and media processes interlock, I will introduce the concept of neuromediality and discuss radical predictive processing accounts that could contribute to the externalization of the mind by treating media themselves as generative models of the world. After a short primer on general media theory, I discuss media examples in three domains: pictures and moving images; digital media; architecture and the built environment. This discussion demonstrates the need for a new cognitive media theory based on enactive artifactual habits—one that will help us gain perspective on the continuous re-mediation of our mind.


Author(s):  
A. Greenhouse-Tucknott ◽  
J. B. Butterworth ◽  
J. G. Wrightson ◽  
N. J. Smeeton ◽  
H. D. Critchley ◽  
...  

AbstractFatigue is a common experience in both health and disease. Yet, pathological (i.e., prolonged or chronic) and transient (i.e., exertional) fatigue symptoms are traditionally considered distinct, compounding a separation between interested research fields within the study of fatigue. Within the clinical neurosciences, nascent frameworks position pathological fatigue as a product of inference derived through hierarchical predictive processing. The metacognitive theory of dyshomeostasis (Stephan et al., 2016) states that pathological fatigue emerges from the metacognitive mechanism in which the detection of persistent mismatches between prior interoceptive predictions and ascending sensory evidence (i.e., prediction error) signals low evidence for internal generative models, which undermine an agent’s feeling of mastery over the body and is thus experienced phenomenologically as fatigue. Although acute, transient subjective symptoms of exertional fatigue have also been associated with increasing interoceptive prediction error, the dynamic computations that underlie its development have not been clearly defined. Here, drawing on the metacognitive theory of dyshomeostasis, we extend this account to offer an explicit description of the development of fatigue during extended periods of (physical) exertion. Accordingly, it is proposed that a loss of certainty or confidence in control predictions in response to persistent detection of prediction error features as a common foundation for the conscious experience of both pathological and nonpathological fatigue.


2019 ◽  
Author(s):  
Beren Millidge

Initial and preliminary implementations of predictive processing and active inference models are presented. These include the baseline hierarchical predictive coding models of (Friston 2003, 2005), and dynamical predictive coding models using generalised coordinates (Friston 2008, 2010, Buckley 2017). Additionally, we re-implement and experiment with the active inference thermostat presented in (Buckley 2017) and also implement an active inference agent with a hierarchical predictive coding perceptual model on the more challenging cart-pole task from OpanAI gym. We discuss the initial performance, capabilities, and limitations of these models in their preliminary stages and consider how they might be further scaled up to tackle more challenging tasks.


2016 ◽  
Vol 371 (1708) ◽  
pp. 20160007 ◽  
Author(s):  
Anil K. Seth ◽  
Karl J. Friston

We review a recent shift in conceptions of interoception and its relationship to hierarchical inference in the brain. The notion of interoceptive inference means that bodily states are regulated by autonomic reflexes that are enslaved by descending predictions from deep generative models of our internal and external milieu. This re-conceptualization illuminates several issues in cognitive and clinical neuroscience with implications for experiences of selfhood and emotion. We first contextualize interoception in terms of active (Bayesian) inference in the brain, highlighting its enactivist (embodied) aspects. We then consider the key role of uncertainty or precision and how this might translate into neuromodulation. We next examine the implications for understanding the functional anatomy of the emotional brain, surveying recent observations on agranular cortex. Finally, we turn to theoretical issues, namely, the role of interoception in shaping a sense of embodied self and feelings. We will draw links between physiological homoeostasis and allostasis, early cybernetic ideas of predictive control and hierarchical generative models in predictive processing. The explanatory scope of interoceptive inference ranges from explanations for autism and depression, through to consciousness. We offer a brief survey of these exciting developments. This article is part of the themed issue ‘Interoception beyond homeostasis: affect, cognition and mental health’.


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1155
Author(s):  
Stephen Fox

In this paper, the Adaptive Calibration Model (ACM) and Active Inference Theory (AIT) are related to future-proofing startups. ACM encompasses the allocation of energy by the stress response system to alternative options for action, depending upon individuals’ life histories and changing external contexts. More broadly, within AIT, it is posited that humans survive by taking action to align their internal generative models with sensory inputs from external states. The first contribution of the paper is to address the need for future-proofing methods for startups by providing eight stress management principles based on ACM and AIT. Future-proofing methods are needed because, typically, nine out of ten startups do not survive. A second contribution is to relate ACM and AIT to startup life cycle stages. The third contribution is to provide practical examples that show the broader relevance ACM and AIT to organizational practice. These contributions go beyond previous literature concerned with entrepreneurial stress and organizational stress. In particular, rather than focusing on particular stressors, this paper is focused on the recalibrating/updating of startups’ stress responsivity patterns in relation to changes in the internal state of the startup and/or changes in the external state. Overall, the paper makes a contribution to relating physics of life constructs concerned with energy, action and ecological fitness to human organizations.


2020 ◽  
Author(s):  
Adam Safron

Integrated World Modeling Theory (IWMT) is a synthetic model that attempts to unify theories of consciousness within the Free Energy Principle and Active Inference framework, with particular emphasis on Integrated Information Theory (IIT) and Global Neuronal Workspace Theory (GNWT). IWMT further suggests predictive processing in sensory hierarchies may be well-modeled as (folded, sparse, partially disentangled) variational autoencoders, with beliefs discretely-updated via the formation of synchronous complexes—as self-organizing harmonic modes (SOHMs)—potentially entailing maximal a posteriori (MAP) estimation via turbo coding. In this account, alpha-synchronized SOHMs across posterior cortices may constitute the kinds of maximal complexes described by IIT, as well as samples (or MAP estimates) from multimodal shared latent space, organized according to egocentric reference frames, entailing phenomenal consciousness as mid-level perceptual inference. When these posterior SOHMs couple with frontal complexes, this may enable various forms of conscious access as a kind of mental act(ive inference), affording higher order cognition/control, including the kinds of attentional/intentional processing and reportability described by GNWT. Across this autoencoding heterarchy, intermediate-level beliefs may be organized into spatiotemporal trajectories by the entorhinal/hippocampal system, so affording episodic memory, counterfactual imaginings, and planning.


Sign in / Sign up

Export Citation Format

Share Document