scholarly journals Identification of an immunodominant epitope in the C terminus of glycoprotein 5 of porcine reproductive and respiratory syndrome virus

2001 ◽  
Vol 82 (5) ◽  
pp. 995-999 ◽  
Author(s):  
María Jose Rodriguez ◽  
Javier Sarraseca ◽  
Jesús Fominaya ◽  
Elena Cortés ◽  
Antonio Sanz ◽  
...  

Glycoprotein 5 (GP5) is the major glycoprotein of porcine reproductive and respiratory syndrome virus (PRRSV). Expression of GP5 has been improved by removing the transmembrane regions. Vectors were constructed encoding complete GP5 plus three mutants: GP5 ΔNs (residues 28–201), GP5[30–67] (residues 30–67) and GP5[30–201] (residues 30–67/130–201). The three deletion mutants were expressed at levels 20–30 times higher than complete GP5. GP5[30–201] was well recognized in ELISA or immunoblotting by a collection of pig sera. All the fragments were tested for the generation of MAbs, but only the polyhistidine-tagged fragment GP5[30–201]H elicited an antibody response sufficient to produce MAbs. The two MAbs were positive for PRRSV in ELISA and immunoblotting, but negative for virus neutralization. MAb 4BE12 reacted with residues 130–170 and MAb 3AH9 recognized residues 170–201. This region was recognized strongly in immunoblotting by a collection of infected-pig sera. These results indicate diagnostic potential for this epitope.

2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 18-18
Author(s):  
Leticia P Sanglard ◽  
Felipe Hickmann ◽  
Yijian Huang ◽  
Kent A Gray ◽  
Daniel Linhares ◽  
...  

Abstract Immunoglobulin G antibody response, measured as sample-to-positive (S/P) ratio, to Porcine Reproductive and Respiratory Syndrome virus (PRRSV) has been proposed as an indicator trait for improved reproductive performance in PRRSV-infected purebred sows and PRRSV-vaccinated crossbred gilts. In this study, we investigated the genetic correlations (rg) of S/P ratio following a PRRSV outbreak and PRRSV-vaccination with performance in non-exposed and PRRSV-exposed sows. PRRSV outbreak phase was defined based on previously described methodologies after the detection of typical clinical signs of PRRSV infection. 541 Landrace sows had S/P ratio measured at ~54 days after the beginning of the PRRSV outbreak (S/Poutbreak), and 906 Landrace x Large White naïve F1 gilts had S/P ratio measured at ~50 days after vaccination with a commercial modified live PRRSV vaccine (S/PVx). 711 and 428 Landrace sows had reproductive performance recorded before and during the PRRSV outbreak, respectively. 811 vaccinated F1 animals had farrowing performance for up to 3 parities. All animals were genotyped for ~28K SNPs. The estimate of rg of S/Poutbreakwith S/PVx was high (rg±SE = 0.72±0.18). Estimates of rg of S/Poutbreak with reproductive performance in F1 sows were low to moderate, ranging from 0.05±0.23 (number stillborn) to 0.30±0.20 (total number born). Estimates of rg of S/PVxwith reproductive performance in non-infected purebred sows were moderate and favorable with number born alive (0.50±0.23), but low (0 to -0.11±0.23) with litter mortality traits. Estimates of rg of S/PVx were moderate and negative (-0.47±0.18) with the number of mummies in PRRSV-infected purebred sows and low with other traits (-0.29±0.18 for total number born to 0.05±0.18 for number stillborn). These results indicate that selection for antibody response following a PRRSV outbreak collected in purebred sows and to PRRSV vaccination collected in commercial crossbred gilts may increase litter size of non-infected and PRRSV-exposed purebred and commercial crossbred sows.


1986 ◽  
Vol 6 (4) ◽  
pp. 1304-1314
Author(s):  
M Hannink ◽  
M K Sauer ◽  
D J Donoghue

The v-sis gene encodes chain B of platelet-derived growth factor. However, this gene codes for additional amino acids at both the N terminus and the C terminus of its gene product which are not present in the amino acid sequence of platelet-derived growth factor. We constructed a series of deletion mutants with deletions in the v-sis gene in order to define the C-terminal limit of the v-sis gene product which is required for transformation. Deletion mutants of the v-sis gene which encoded truncated gene products up to 57 residues shorter than the v-siswt gene product were still able to transform cells. The minimal transforming region of the v-sis gene product contained six residues fewer than were present in chain B of platelet-derived growth factor. Only 10 residues, including the sequence Cys-Lys-Cys, separated the smallest transforming gene product from the largest nontransforming gene product. These cysteine residues were also important for dimerization of the v-sis gene product, since all of the nontransforming v-sis deletions were unable to form dimers when they were analyzed under nonreducing conditions. Our results suggest that there is a strong connection between transformation and dimerization.


2009 ◽  
Vol 84 (6) ◽  
pp. 3101-3105 ◽  
Author(s):  
Hanne Van Gorp ◽  
Wander Van Breedam ◽  
Jan Van Doorsselaere ◽  
Peter L. Delputte ◽  
Hans J. Nauwynck

ABSTRACT Scavenger receptor CD163 is a key entry mediator for porcine reproductive and respiratory syndrome virus (PRRSV). To identify the CD163 protein domains involved in PRRSV infection, deletion mutants and chimeric mutants were created. Infection experiments revealed that scavenger receptor cysteine-rich (SRCR) domain 5 (SRCR 5) is essential for PRRSV infection, while the four N-terminal SRCR domains and the cytoplasmic tail are not required. The remaining CD163 protein domains need to be present but can be replaced by corresponding SRCR domains from CD163-L1, resulting in reduced (SRCR 6 and interdomain regions) or unchanged (SRCR 7 to SRCR 9) infection efficiency. In addition, CD163-specific antibodies recognizing SRCR 5 are able to reduce PRRSV infection.


2020 ◽  
Vol 222 (8) ◽  
pp. 1265-1269 ◽  
Author(s):  
Ger Rijkers ◽  
Jean-Luc Murk ◽  
Bas Wintermans ◽  
Bieke van Looy ◽  
Marcel van den Berge ◽  
...  

Abstract We determined and compared the humoral immune response in patients with severe (hospitalized) and mild (nonhospitalized) coronavirus disease 2019 (COVID-19). Patients with severe disease (n = 38) develop a robust antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including immunoglobulin G and immunoglobulin A antibodies. The geometric mean 50% virus neutralization titer is 1:240. SARS-CoV-2 infection was found in hospital personnel (n = 24), who developed mild symptoms necessitating leave of absence and self-isolation, but not hospitalization; 75% developed antibodies, but with low/absent virus neutralization (60% with titers <1:20). While severe COVID-19 patients develop a strong antibody response, mild SARS-CoV-2 infections induce a modest antibody response. Long-term monitoring will show whether these responses predict protection against future infections.


1994 ◽  
Vol 6 (4) ◽  
pp. 410-415 ◽  
Author(s):  
Eric A. Nelson ◽  
Jane Christopher-Hennings ◽  
David A. Benfield

The antibody responses of pigs to porcine reproductive and respiratory syndrome virus (isolate VR-2332) were evaluated by indirect immunofluorescence, virus neutralization, and immunoblotting. All pigs in each group were positive by indirect immunofluorescence 14-21 days postexposure (DPE), and antibodies to specific viral proteins (15, 19 or 26 kD) were initially demonstrated by immunoblotting at 7–21 days DPE. Neutralizing antibodies were detected in only 2 pigs that were inoculated intranasally and given additional parenteral injections with adjuvant. These antibodies appeared much later, 51–70 DPE, than did antibodies detected by indirect immunofluorescence. The titer of the neutralizing antibodies increased until 127 DPE, after which the titers decreased, and 1 animal became seronegative for neutralizing antibody by 262 DPE.


Sign in / Sign up

Export Citation Format

Share Document