scholarly journals The novel picornavirus Equine rhinitis B virus contains a strong type II internal ribosomal entry site which functions similarly to that of Encephalomyocarditis virus

2001 ◽  
Vol 82 (9) ◽  
pp. 2257-2269 ◽  
Author(s):  
Tracey M. Hinton ◽  
Brendan S. Crabb

Equine rhinitis B virus (ERBV) has recently been classified as an Erbovirus, a new genus in the Picornaviridae family. ERBV is distantly related to members of the Cardiovirus and Aphthovirus genera which utilize a type II internal ribosome entry sequence (IRES) to initiate translation. We show that ERBV also possesses the core stem–loop structures (H–L) of a type II IRES. The function of the ERBV IRES was characterized using bicistronic plasmids that were analysed both by transfection into BHK-21 cells and by in vitro transcription and translation in rabbit reticulocyte lysates. In both systems, a region encompassed by nucleotides (nt) 189–920 downstream of the poly(C) tract was required for maximal translation. This sequence includes stem–loops H–L as well as four additional upstream stem–loops. Nt 904 corresponds to the second of three in-frame AUG codons located immediately downstream of the polypyrimidine tract (nucleotides 869–880). Site-directed mutagenesis demonstrated that AUG2 is the major initiation codon despite the appropriate positioning of AUG1 16 nt downstream of the polypyrimidine tract. In direct IRES competition experiments, the ERBV IRES was able to compete strongly for translation factors with the IRES of Encephalomyocarditis virus (EMCV). This was true when the assays were performed in vitro (with the IRESs competing either in cis or trans) and in vivo (with the IRESs competing in cis). A comparative analysis of the strength of several IRESs revealed that the ERBV IRES, like that of the EMCV, is a powerful inducer of translation and may have similar potential for use in mammalian expression systems.

2006 ◽  
Vol 87 (12) ◽  
pp. 3667-3677 ◽  
Author(s):  
Jie Lu ◽  
Jiamin Zhang ◽  
Xiaochun Wang ◽  
Hong Jiang ◽  
Chuanfeng Liu ◽  
...  

Ectropis obliqua picorna-like virus (EoPV) is a newly described insect virus that is classified as a putative member of the genus Iflavirus. The virus possesses a large, positive-sense RNA genome encoding a single polyprotein that shares physicochemical properties with those of members of the family Picornaviridae. The 5′ untranslated region (5′ UTR) plays an important role in picornavirus translation initiation, as it contains an internal ribosome entry site (IRES) that mediates cap-independent translation. To investigate translation in EoPV, an extensive range of mutations were engineered within the 5′ UTR and the effects of these changes were examined in vitro and in vivo by using a bicistronic construct. Results showed that deletions within the first 63 nt had little impact on IRES activity, whilst core IRES function was contained within stem–loops C and D, as their removal abrogated IRES activity significantly. In contrast to these findings, removal of stem–loop G containing two cryptic AUGs caused a remarkable increase in IRES activity, which was further investigated by site-directed mutagenesis at these two positions. It was also confirmed that initiation of protein synthesis occurs at AUG6 (position 391–394) and not at the AUG immediately downstream of the polypyrimidine tract. Mutation of the polypyrimidine tract (CCTTTC) had a slight effect on EoPV IRES activity. Furthermore, mutations of the RAAA motif led to a decrease in IRES activity of approximately 40 % in vitro, but these results were not supported by in vivo experiments. In conclusion, this study reveals that the EoPV IRES element is unique, although it has features in common with the type II IRESs.


1989 ◽  
Vol 9 (11) ◽  
pp. 5134-5142 ◽  
Author(s):  
M Kozak

This paper describes in vitro experiments with two types of intramolecular duplex structures that inhibit translation in cis by preventing the formation of an initiation complex or by causing the complex to be abortive. One stem-loop structure (delta G = -30 kcal/mol) prevented mRNA from engaging 40S subunits when the hairpin occurred 12 nucleotides (nt) from the cap but had no deleterious effect when it was repositioned 52 nt from the cap. This result confirms prior in vivo evidence that the 40S subunit-factor complex, once bound to mRNA, has considerable ability to penetrate secondary structure. Consequently, translation is most sensitive to secondary structure at the entry site for ribosomes, i.e., the 5' end of the mRNA. The second stem-loop structure (hp7; delta G = -61 kcal/mol, located 72 nt from the cap) was too stable to be unwound by 40S ribosomes, hp7 did not prevent a 40S ribosomal subunit from binding but caused the 40S subunit to stall on the 5' side of the hairpin, exactly as the scanning model predicts. Control experiments revealed that 80S elongating ribosomes could disrupt duplex structures, such as hp7, that were too stable to be penetrated by the scanning 40S ribosome-factor complex. A third type of base-paired structure shown to inhibit translation in vivo involves a long-range interaction between the 5' and 3' noncoding sequences.


2003 ◽  
Vol 77 (6) ◽  
pp. 3353-3359 ◽  
Author(s):  
Oréda Boussadia ◽  
Michael Niepmann ◽  
Laurent Créancier ◽  
Anne-Catherine Prats ◽  
François Dautry ◽  
...  

ABSTRACT Translation of picornavirus RNAs is mediated by internal ribosomal entry site (IRES) elements and requires both standard eukaryotic translation initiation factors (eIFs) and IRES-specific cellular trans-acting factors (ITAFs). Unr, a cytoplasmic RNA-binding protein that contains five cold-shock domains and is encoded by the gene upstream of N-ras, stimulates translation directed by the human rhinovirus (HRV) IRES in vitro. To examine the role of Unr in translation of picornavirus RNAs in vivo, we derived murine embryonic stem (ES) cells in which either one (−/+) or both (−/−) copies of the unr gene were disrupted by homologous recombination. The activity of picornaviral IRES elements was analyzed in unr +/+, unr +/−, and unr −/− cell lines. Translation directed by the HRV IRES was severely impaired in unr −/− cells, as was that directed by the poliovirus IRES, revealing a requirement for Unr not previously observed in vitro. Transient expression of Unr in unr −/− cells efficiently restored the HRV and poliovirus IRES activities. In contrast, the IRES elements of encephalomyocarditis virus and foot-and-mouth-disease virus are not Unr dependent. Thus, Unr is a specific regulator of HRV and poliovirus translation in vivo and may represent a cell-specific determinant limiting replication of these viruses.


1989 ◽  
Vol 9 (11) ◽  
pp. 5134-5142
Author(s):  
M Kozak

This paper describes in vitro experiments with two types of intramolecular duplex structures that inhibit translation in cis by preventing the formation of an initiation complex or by causing the complex to be abortive. One stem-loop structure (delta G = -30 kcal/mol) prevented mRNA from engaging 40S subunits when the hairpin occurred 12 nucleotides (nt) from the cap but had no deleterious effect when it was repositioned 52 nt from the cap. This result confirms prior in vivo evidence that the 40S subunit-factor complex, once bound to mRNA, has considerable ability to penetrate secondary structure. Consequently, translation is most sensitive to secondary structure at the entry site for ribosomes, i.e., the 5' end of the mRNA. The second stem-loop structure (hp7; delta G = -61 kcal/mol, located 72 nt from the cap) was too stable to be unwound by 40S ribosomes, hp7 did not prevent a 40S ribosomal subunit from binding but caused the 40S subunit to stall on the 5' side of the hairpin, exactly as the scanning model predicts. Control experiments revealed that 80S elongating ribosomes could disrupt duplex structures, such as hp7, that were too stable to be penetrated by the scanning 40S ribosome-factor complex. A third type of base-paired structure shown to inhibit translation in vivo involves a long-range interaction between the 5' and 3' noncoding sequences.


2003 ◽  
Vol 50 (3) ◽  
pp. 875-882 ◽  
Author(s):  
Maciej Małecki ◽  
Małgorzata Przybyszewska ◽  
Przemysław Janik

Manipulation of angiogenesis in vivo is an example of successful gene therapy strategies. Overexpression of angiogenic genes like VEGF, FGF or PDGF causes new vessel formation and improves the clinical state of patients. Gene therapy is a very promising procedure but requires large amounts of pharmaceutical-grade plasmid DNA. In this regard we have constructed a bicistronic plasmid DNA vector encoding two proangiogenic factors, VEGF165 and FGF-2. The construct (pVIF) contains the internal ribosome entry site (IRES) of the encephalomyocarditis virus (ECMV) which permits both genes to be translated from a single bicistronic mRNA. The IRES sequence allows for a high efficiency of gene expression in vivo. The pVIF vector was characterized in vitro and in vivo. In vivo angiogenesis studies showed that the bicistronic vector encoding two proangiogenic factors induces the formation of new vessels significantly more than pVEGF165 or pFGF-2 alone. In our opinion the combined proangiogenic approach with VEGF165 and FGF-2 is more powerful and efficient than single gene therapy. We also postulate that IRES sequence can serve as a useful device improving efficiency of gene therapy.


2000 ◽  
Vol 74 (22) ◽  
pp. 10430-10437 ◽  
Author(s):  
Ronald Jubin ◽  
Nicole E. Vantuno ◽  
Jeffrey S. Kieft ◽  
Michael G. Murray ◽  
Jennifer A. Doudna ◽  
...  

ABSTRACT The hepatitis C virus (HCV) internal ribosome entry site (IRES) is a highly structured RNA element that directs cap-independent translation of the viral polyprotein. Morpholino antisense oligonucleotides directed towards stem loop IIId drastically reduced HCV IRES activity. Mutagenesis studies of this region showed that the GGG triplet (nucleotides 266 through 268) of the hexanucleotide apical loop of stem loop IIId is essential for IRES activity both in vitro and in vivo. Sequence comparison showed that apical loop nucleotides (UUGGGU) were absolutely conserved across HCV genotypes and the GGG triplet was strongly conserved among related Flavivirus andPestivirus nontranslated regions. Chimeric IRES elements with IIId derived from GB virus B (GBV-B) in the context of the HCV IRES possess translational activity. Mutations within the IIId stem loop that abolish IRES activity also affect the RNA structure in RNase T1-probing studies, demonstrating the importance of correct RNA folding to IRES function.


2001 ◽  
Vol 21 (8) ◽  
pp. 2826-2837 ◽  
Author(s):  
Arun Venkatesan ◽  
Asim Dasgupta

ABSTRACT We report here a novel fluorescent protein-based screen to identify small, synthetic internal ribosome entry site (IRES) elements in vivo. A library of bicistronic plasmids encoding the enhanced blue and green fluorescent proteins (EBFP and EGFP) separated by randomized 50-nucleotide-long sequences was amplified in bacteria and delivered into mammalian cells via protoplast fusion. Cells that received functional IRES elements were isolated using the EBFP and EGFP reporters and fluorescence-activated cell sorting, and several small IRES elements were identified. Two of these elements were subsequently shown to possess IRES activity comparable to that of a variant of the encephalomyocarditis virus IRES element in a context-independent manner both in vitro and in vivo, and these elements functioned in multiple cell types. Although no sequence or structural homology was apparent between the synthetic IRES elements and known viral and cellular IRES elements, the two synthetic IRES elements specifically blocked poliovirus (PV) IRES-mediated translation in vitro. Competitive protein-binding experiments suggested that these IRES elements compete with PV IRES-mediated translation by utilizing some of the same factors as the PV IRES to direct translation. The utility of this fluorescent protein-based screen in identifying IRES elements with improved activity as well as in probing the mechanism of IRES-mediated translation is discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Seok-Min Yun ◽  
Tae-Young Lee ◽  
Hee-Young Lim ◽  
Jungsang Ryou ◽  
Joo-Yeon Lee ◽  
...  

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging, tick-borne Bandavirus that causes lethal disease in humans. As there are no licensed vaccines and therapeutics for SFTSV, there is an urgent need to develop countermeasures against it. In this respect, a reverse genetics (RG) system is a powerful tool to help achieve this goal. Herein, we established a T7 RNA polymerase-driven RG system to rescue infectious clones of a Korean SFTSV human isolate entirely from complementary DNA (cDNA). To establish this system, we cloned cDNAs encoding the three antigenomic segments into transcription vectors, with each segment transcribed under the control of the T7 promoter and the hepatitis delta virus ribozyme (HdvRz) sequences. We also constructed two helper plasmids expressing the nucleoprotein (NP) or viral RNA-dependent RNA polymerase (RdRp) under the control of the T7 promoter and the encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES). After co-transfection into BHK/T7-9 cells with three transcription and two helper plasmids, then passaging in Vero E6 or Huh-7 cells, we confirmed efficient rescue of the recombinant SFTSV. By evaluating the in vitro and in vivo virological properties of the parental and rescued SFTSVs, we show that the rescued virus exhibited biological properties similar to those of the parental virus. This system will be useful for identifying molecular viral determinants of SFTSV infection and pathogenesis and for facilitating the development of vaccine and antiviral approaches.


2021 ◽  
Author(s):  
Nikesh Patel ◽  
Sam Clark ◽  
Eva U. Weiß ◽  
Carlos P. Mata ◽  
Jen Bohon ◽  
...  

AbstractThe roles of RNA sequence/structure motifs, Packaging Signals (PSs), for regulating assembly of an HBV genome transcript have been investigated in an efficient in vitro assay containing only core protein (Cp) and RNA. Variants of three conserved PSs, within the genome of a strain not used previously, preventing correct presentation of a Cp-recognition loop motif are differentially deleterious for assembly of nucleocapsid-like particles (NCPs). Cryo-electron microscopy reconstruction of the T=4 NCPs formed with the wild-type gRNA transcript, reveal that the interior of the Cp shell is in contact with lower resolution density, potentially encompassing the arginine-rich protein domains and gRNA. Symmetry-relaxation of this reconstruction reveals that such contacts are made at every symmetry axis. We infer from their regulation of assembly that some of these contacts would involve gRNA PSs, and confirmed this by X-ray RNA footprinting. Mutation of the ε stem-loop in the gRNA, where polymerase binds in vivo, produces a poor RNA assembly substrate with Cp alone, largely due to alterations in its conformation. The results show that RNA PSs regulate assembly of HBV genomic transcripts in vitro, and therefore may play similar roles in vivo, in concert with other molecular factors.


2000 ◽  
Vol 74 (2) ◽  
pp. 773-783 ◽  
Author(s):  
René Rijnbrand ◽  
Geoffrey Abell ◽  
Stanley M. Lemon

ABSTRACT GB virus B (GBV-B) is a recently discovered hepatotropic flavivirus that is distantly related to hepatitis C virus (HCV). We show here that translation of its polyprotein is initiated by internal entry of ribosomes on GBV-B RNA. We analyzed the translational activity of dicistronic RNA transcripts containing wild-type or mutated 5′ nontranslated GBV-B RNA (5′NTR) segments, placed between the coding sequences of two reporter proteins, in vitro in rabbit reticulocyte lysate and in vivo in transfected BT7-H cells. We related these results to a previously proposed model of the secondary structure of the GBV-B 5′NTR (M. Honda, et al. RNA 2:955–968, 1996). We identified an internal ribosome entry site (IRES) bounded at its 5′ end by structural domain II, a location analogous to the 5′ limit of the IRES in both the HCV and pestivirus 5′NTRs. Mutational analysis confirmed the structure proposed for domain II of GBV-B RNA, and demonstrated that optimal IRES-mediated translation is dependent on each of the putative RNA hairpins in this domain, including two stem-loops not present in the HCV or pestivirus structures. IRES activity was also absolutely dependent on (i) phylogenetically conserved, adenosine-containing bulge loops in domain III and (ii) the primary nucleotide sequence of stem-loop IIIe. IRES-directed translation was inhibited by a series of point mutations predicted to stabilize stem-loop IV, which contains the initiator AUG codon in its loop segment. A reporter gene was translated most efficiently when fused directly to the initiator AUG codon, with no intervening downstream GBV-B sequence. This finding indicates that the 3′ limit of the GBV-B IRES is at the initiator AUG and that it does not require downstream polyprotein-coding sequence as suggested for the HCV IRES. These results show that the GBV-B IRES, while sharing a common general structure, differs both structurally and functionally from other flavivirus IRES elements.


Sign in / Sign up

Export Citation Format

Share Document