scholarly journals Restoration of Aerial Mycelium and Antibiotic Production in a Streptomyces griseoflavus Arginine Auxotroph

Microbiology ◽  
1984 ◽  
Vol 130 (8) ◽  
pp. 2007-2013 ◽  
Author(s):  
K. OCHI ◽  
Y. SAITO ◽  
K. UMEHARA ◽  
I. UEDA ◽  
M. KOHSAKA
1997 ◽  
Vol 43 (12) ◽  
pp. 1118-1125 ◽  
Author(s):  
Martine Aubert ◽  
Elisabeth Weber ◽  
Brigitte Gintz ◽  
Bernard Decaris ◽  
Keith F. Chater

The deduced product of the spa2 gene of Streptomyces ambofaciens is a homologue of RspA, involved in stationary-phase σs factor regulation in Escherichia coli. This suggests that Spa2 could play a part in stationary-phase-associated differentiation in S. ambofaciens. The disruption of spa2 led to reductions in aerial mycelial development and associated spore pigmentation. The mutant phenotype reverted to the wild-type phenotype when the disruption construct spontaneously excised. The spa2 disruption had no detectable effect on growth rates in different media or antibiotic production and resistance. When spa2 was placed on a multicopy plasmid, a severe defect in formation and pigmentation of aerial mycelium resulted. These results strongly suggest that Spa2 is involved in a complex manner in the morphological differentiation process.Key words: Streptomyces, differentiation, stationary-phase regulator.


1988 ◽  
Vol 235 (1279) ◽  
pp. 121-138 ◽  

Streptomycetes are soil bacteria that differ from the genetically well-known Escherichia coli in two striking characteristics. (1) Instead of consisting of an alternation of growth and fission of morphologically simple, undifferentiated rods, the streptomycete life cycle involves the formation of a system of elongated, branching hyphae which, after a period of vegetative growth, respond to specific signals by producing specialized spore-bearing structures. (2) The streptomycetes produce an unrivalled range of chemically diverse ‘secondary metabolites’, which we recognize as antibiotics, herbicides and pharmacologically active molecules, and which presumably play an important role in the streptomycete life cycle in nature. This ‘physiological’ differentiation is often tem­porally associated with the morphological differentiation of sporulation and there are common elements in the regulation of the two sets of processes. In the model system provided by Streptomyces coelicolor A3(2), the isolation of several whole clusters of linked antibiotic biosynthetic pathway genes, and some key regulatory genes involved in sporulation, has made it possible to study the basis for the switching on and off of particular sets of genes during morphological and ‘physiological’ differen­tiation. Genetic analysis clearly reveals a regulatory cascade operating at several levels in a ‘physiological’ branch of the differentiation control system. At the lowest level, within individual clusters of antibiotic biosynthesis genes are genes with a role as activators of the structural genes for the pathway enzymes, and also resistance genes. It is attractive to speculate that the latter play a dual role: protecting the organism from self-destruction by its own potentially lethal product, and forming an essential component of a regulatory circuit that activates the biosyn­thetic genes, thus ensuring that resistance is established before any antibiotic is made. A next higher level of regulation is revealed by the isolation of mutations in a gene ( afsB ) required for expression (probably at the level of transcription) of all five known secondary metabolic pathways in the organism. At a higher level still, the bldA gene, whose product seems to be a tRNA essential to translate the rare (in high [G + C] Streptomyces DNA) TTA leucine codon, controls or influences the whole gamut of morphological and ‘physiological’ differentiation, because bldA mutants fail to produce either secondary metabolites or aerial mycelium and spores, while growing normally in the vegetative phase. Thus a decision to switch from vegetative growth to the secondary phase of colonial development may be taken at the level of translation. In the ‘morphological’ branch of the proposed regulatory cascade, a key gene is whiG whose product, essential for the earliest known step in the metamorphosis of aerial hyphae into spore chains, appears to be an RNA polymerase sigma factor which is not needed for transcription of vegetative genes, but seems to control, at the level of transcription, the decision to sporulate.


2007 ◽  
Vol 21 (1) ◽  
pp. 32-39 ◽  
Author(s):  
Emi Matsukawa ◽  
Youji Nakagawa ◽  
Yuzuru Iimura ◽  
Masayuki Hayakawa

2006 ◽  
Vol 361 (1469) ◽  
pp. 761-768 ◽  
Author(s):  
Keith F Chater

Many of the antibiotics used today are made by a group of bacteria called Streptomyces . Streptomycetes evolved about 450 million years ago as branched filamentous organisms adapted to the utilization of plant remains. They reproduce by sending up specialized aerial branches, which form spores. Aerial growth is parasitic on the primary colony, which is digested and reused for aerial growth. The reproductive phase is coordinated with the secretion of antibiotics, which may protect the colony against invading bacteria during aerial growth. A clue to the integration of antibiotic production and aerial growth is provided by bldA mutants, which are defective in both processes. These mutants lack the ability to translate a particularly rare codon, UUA, in the genetic code. The UUA codon (TTA in DNA) is present in several regulatory genes that control sets of antibiotic production genes, and in one, bldH that controls aerial mycelium formation. The regulatory genes for antibiotic production are all involved in self-reinforcing regulatory systems that potentially amplify the regulatory significance of small changes in the efficiency of translation of UUA codons. One of the regulatory targets of bldH is an extracellular protease inhibitor protein that is likely to delay the digestion of the primary biomass until the colony is ready for aerial growth. The use of the UUA codon to orchestrate different aspects of extracellular biology appeared very early in Streptomyces evolution.


2006 ◽  
Vol 188 (24) ◽  
pp. 8368-8375 ◽  
Author(s):  
Wencheng Li ◽  
Xin Ying ◽  
Yuzheng Guo ◽  
Zhen Yu ◽  
Xiufen Zhou ◽  
...  

ABSTRACT SC7A1 is a cosmid with an insert of chromosomal DNA from Streptomyces coelicolor A3(2). Its insertion into the chromosome of S. coelicolor strains caused a duplication of a segment of ca. 40 kb and delayed actinorhodin antibiotic production and sporulation, implying that SC7A1 carried a gene negatively affecting these processes. The subcloning of SC7A1 insert DNA resulted in the identification of the open reading frame SCO5582 as nsdA, a gene n egatively affecting S treptomyces d ifferentiation. The disruption of chromosomal nsdA caused the overproduction of spores and of three of four known S. coelicolor antibiotics of quite different chemical types. In at least one case (that of actinorhodin), this was correlated with premature expression of a pathway-specific regulatory gene (actII-orf4), implying that nsdA in the wild-type strain indirectly repressed the expression of the actinorhodin biosynthesis cluster. nsdA expression was up-regulated upon aerial mycelium initiation and was strongest in the aerial mycelium. NsdA has DUF921, a Streptomyces protein domain of unknown function and a conserved SXR site. A site-directed mutation (S458A) in this site in NsdA abolished its function. Blast searching showed that NsdA homologues are present in some Streptomyces genomes. Outside of streptomycetes, NsdA-like proteins have been found in several actinomycetes. The disruption of the nsdA-like gene SCO4114 had no obvious phenotypic effects on S. coelicolor. The nsdA orthologue SAV2652 in S. avermitilis could complement the S. coelicolor nsdA-null mutant phenotype.


2005 ◽  
Vol 187 (2) ◽  
pp. 716-728 ◽  
Author(s):  
Alison C. Hunt ◽  
Luis Servín-González ◽  
Gabriella H. Kelemen ◽  
Mark J. Buttner

ABSTRACT The bldC locus, required for formation of aerial hyphae in Streptomyces coelicolor, was localized by map-based cloning to the overlap between cosmids D17 and D25 of a minimal ordered library. Subcloning and sequencing showed that bldC encodes a member of a previously unrecognized family of small (58- to 78-residue) DNA-binding proteins, related to the DNA-binding domains of the MerR family of transcriptional activators. BldC family members are found in a wide range of gram-positive and gram-negative bacteria. Constructed ΔbldC mutants were defective in differentiation and antibiotic production. They failed to form an aerial mycelium on minimal medium and showed severe delays in aerial mycelium formation on rich medium. In addition, they failed to produce the polyketide antibiotic actinorhodin, and bldC was shown to be required for normal and sustained transcription of the pathway-specific activator gene actII-orf4. Although ΔbldC mutants produced the tripyrrole antibiotic undecylprodigiosin, transcripts of the pathway-specific activator gene (redD) were reduced to almost undetectable levels after 48 h in the bldC mutant, in contrast to the bldC + parent strain in which redD transcription continued during aerial mycelium formation and sporulation. This suggests that bldC may be required for maintenance of redD transcription during differentiation. bldC is expressed from a single promoter. S1 nuclease protection assays and immunoblotting showed that bldC is constitutively expressed and that transcription of bldC does not depend on any of the other known bld genes. The bldC18 mutation that originally defined the locus causes a Y49C substitution that results in instability of the protein.


2021 ◽  
Vol 9 (10) ◽  
pp. 2004
Author(s):  
Jan Bobek ◽  
Adéla Mikulová ◽  
Dita Šetinová ◽  
Marie Elliot ◽  
Matouš Čihák

Regulatory RNAs control a number of physiological processes in bacterial cells. Here we report on a 6S-like RNA transcript (scr3559) that affects both development and antibiotic production in Streptomyces coelicolor. Its expression is enhanced during the transition to stationary phase. Strains that over-expressed the scr3559 gene region exhibited a shortened exponential growth phase in comparison with a control strain; accelerated aerial mycelium formation and spore maturation; alongside an elevated production of actinorhodin and undecylprodigiosin. These observations were supported by LC-MS analyses of other produced metabolites, including: germicidins, desferrioxamines, and coelimycin. A subsequent microarray differential analysis revealed increased expression of genes associated with the described morphological and physiological changes. Structural and functional similarities between the scr3559 transcript and 6S RNA, and its possible employment in regulating secondary metabolite production are discussed.


2004 ◽  
Vol 186 (11) ◽  
pp. 3570-3577 ◽  
Author(s):  
Amy M. Gehring ◽  
Stephanie T. Wang ◽  
Daniel B. Kearns ◽  
Narie Yoo Storer ◽  
Richard Losick

ABSTRACT Filamentous soil bacteria of the genus Streptomyces carry out complex developmental cycles that result in sporulation and production of numerous secondary metabolites with pharmaceutically important activities. To further characterize the molecular basis of these developmental events, we screened for mutants of Streptomyces coelicolor that exhibit aberrant morphological differentiation and/or secondary metabolite production. On the basis of this screening analysis and the subsequent complementation analysis of the mutants obtained we assigned developmental roles to a gene involved in methionine biosynthesis (metH) and two previously uncharacterized genes (SCO6938 and SCO2525) and we reidentified two previously described developmental genes (bldA and bldM). In contrast to most previously studied genes involved in development, the genes newly identified in the present study all appear to encode biosynthetic enzymes instead of regulatory proteins. The MetH methionine synthase appears to be required for conversion of aerial hyphae into chains of spores, SCO6938 is a probable acyl coenzyme A dehydrogenase that contributes to the proper timing of aerial mycelium formation and antibiotic production, and SCO2525 is a putative methyltransferase that influences various aspects of colony growth and development.


2002 ◽  
Vol 184 (23) ◽  
pp. 6417-6423 ◽  
Author(s):  
Ikuo Kojima ◽  
Kano Kasuga ◽  
Masayuki Kobayashi ◽  
Akira Fukasawa ◽  
Satoshi Mizuno ◽  
...  

ABSTRACT The occurrence of pleiotropic mutants that are defective in both antibiotic production and aerial mycelium formation is peculiar to streptomycetes. Pleiotropic mutant KSB was isolated from wild-type Streptomyces kasugaensis A1R6, which produces kasugamycin, an antifungal aminoglycoside antibiotic. A 9.3-kb DNA fragment was cloned from the chromosomal DNA of strain A1R6 by complementary restoration of kasugamycin production and aerial hypha formation to mutant KSB. Complementation experiments with deletion plasmids and subsequent DNA analysis indicated that orf5, encoding 90 amino acids, was responsible for the restoration. A protein homology search revealed that orf5 was a homolog of rpoZ, the gene that is known to encode RNA polymerase subunit omega (ω), thus leading to the conclusion that orf5 was rpoZ in S. kasugaensis. The pleiotropy of mutant KSB was attributed to a 2-bp frameshift deletion in the rpoZ region of mutant KSB, which probably resulted in a truncated, incomplete ω of 47 amino acids. Furthermore, rpoZ-disrupted mutant R6D4 obtained from strain A1R6 by insertion of Tn5 aphII into the middle of the rpoZ-coding region produced neither kasugamycin nor aerial mycelia, similar to mutant KSB. When rpoZ of S. kasugaensis and Streptomyces coelicolor, whose deduced products differed in the sixth amino acid residue, were introduced into mutant R6D4 via a plasmid, both transformants produced kasugamycin and aerial hyphae without significant differences. This study established that rpoZ is required for kasugamycin production and aerial mycelium formation in S. kasugaensis and responsible for pleiotropy.


Sign in / Sign up

Export Citation Format

Share Document