scholarly journals Investigating the effect of Herpes Simplex Virus 1 Latency-Associated Non-Coding RNAs on the Human Neuronal Transcriptome

2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Amy Jacobs ◽  
Ryan Mate ◽  
Martin Fritzsche ◽  
Peter O’Hare ◽  
Stacey Efstathiou

Herpes simplex virus 1 (HSV-1) is a prevalent neurotropic virus that persists for the host’s lifetime due to HSV-1 establishing latency in sensory neurons. During latency, the only abundantly transcribed HSV-1 gene is the latency-associated transcript (LAT), which is processed into the 1.5kb or 2.0kb major LAT intron and several microRNAs. These latency-associated non-coding RNAs (ncRNAs) have been reported to impact the establishment, maintenance and reactivation from latency. However, the molecular mechanisms of these ncRNAs are not fully characterised, especially in the context of human neurons. This study investigated how the latency-associated ncRNAs affect the human neuronal transcriptome. We developed an experimental system to deliver the latency-associated ncRNAs to human neurons, differentiated from SH-SY5Y neuroblastoma cells. The cells were infected with a replication-defective HSV-1 mutant, in1382, that establishes a quiescent infection in which LAT is strongly expressed. Alternatively, we utilised lentiviruses engineered to express the first 3.1kb of LAT, without or with mutations in splice sites that prevents splicing of the major LAT intron, or five HSV-1 microRNAs, shown to be abundant in latently infected human ganglia. Following RNA-Seq of uninfected versus infected or transduced SH-SY5Y cells, we identified 178 host genes that had significant differential expression in response to in1382 quiescent infection and lentivirus delivery of LAT or the latency-associated microRNAs. A subset of these were validated by PCR. This work provides insight into possible roles of the latency-associated ncRNAs in neuronal cell biology and latency that could aid future investigations examining how HSV-1 latency affects human neurons.

2020 ◽  
Author(s):  
Enrico R. Barrozo ◽  
Sanae Nakayama ◽  
Pankaj Singh ◽  
Donna M. Neumann ◽  
David C. Bloom

The regulatory functions of 10 individual viral miRNAs that are abundantly expressed from the Herpes Simplex Virus 1 (HSV-1) latency-associated transcript (LAT) region remain largely unknown. Here, we focus on HSV-1 miRNA miR-H8, which is within the LAT 3p exon, antisense to the first intron of ICP0, and has previously been shown to target a host GPI-anchoring pathway. However, the functions of this miRNA have not been assessed in the context of the viral genome during infection. Therefore, we constructed a recombinant virus lacking miR-H8 (17dmiR-H8) and compared it to the parental wild-type and rescue viruses to characterize phenotypic differences. In rabbit skin cells, 17dmiR-H8 exhibited only subtle reductions in viral yields. In contrast, we found significant decreases in both viral yields (8-fold) and DNA replication (9.9-fold) in murine neuroblastoma cells, while 17dmiR-H8 exhibited a 3.6 fold increase in DNA replication in differentiated human neuronal cells (LUHMES). These cell culture phenotypes suggested potential host and/or neuronal-specific roles for miR-H8 in acute viral replication. To assess whether miR-H8 plays a role in HSV latency or reactivation, we used a human in vitro reactivation model, as well as mouse and rabbit reactivation models. In the LUHMES-induced reactivation model, there was no difference in viral yields at 48 h post-reactivation. In the murine dorsal root ganglia explant and rabbit ocular adrenergic reactivation models, the deletion of miR-H8 had no detectable effect on genome load during latency, or reactivation. These results indicate that miR-H8 is dispensable for establishment of HSV-1 latency and reactivation. IMPORTANCE Herpesviruses have a remarkable ability to sustain lifelong infections by evading host immune responses, establishing a latent reservoir, and by maintaining the ability to reactivate the lytic cascade to transmit the virus to the next host. The HSV-1 latency-associated transcript region is known to regulate many aspects of HSV-1 latency and reactivation, though the mechanisms for these functions remain unknown. To this end, we characterize an HSV-1 recombinant containing a deletion of a LAT-encoded miRNA, miR-H8, and demonstrate that it plays no detectable role in the establishment of latency or reactivation in differentiated human neurons (LUHMES), mouse and rabbit models. Therefore, this study allows us to exclude miR-H8 from phenotypes previously attributed to the LAT region. Elucidating the genetic elements of HSV-1 responsible for the establishment, maintenance, and reactivation from latency may lead to novel strategies for combating persistent herpesvirus infections.


2018 ◽  
Vol 92 (22) ◽  
Author(s):  
Tiffany Russell ◽  
Ben Bleasdale ◽  
Michael Hollinshead ◽  
Gillian Elliott

ABSTRACTDespite differences in the pathogenesis and host range of alphaherpesviruses, many stages of their morphogenesis are thought to be conserved. Here, an ultrastructural study of bovine herpesvirus 1 (BoHV-1) envelopment revealed profiles similar to those previously found for herpes simplex virus 1 (HSV-1), with BoHV-1 capsids associating with endocytic tubules. Consistent with the similarity of their genomes and envelopment strategies, the proteomic compositions of BoHV-1 and HSV-1 virions were also comparable. However, BoHV-1 morphogenesis exhibited a diversity in envelopment events. First, heterogeneous primary envelopment profiles were readily detectable at the inner nuclear membrane of BoHV-1-infected cells. Second, the BoHV-1 progeny comprised not just full virions but also an abundance of capsidless, noninfectious light particles (L-particles) that were released from the infected cells in numbers similar to those of virions and in the absence of DNA replication. Proteomic analysis of BoHV-1 L-particles and the much less abundant HSV-1 L-particles revealed that they contained the same complement of envelope proteins as virions but showed variations in tegument content. In the case of HSV-1, the UL46 tegument protein was reproducibly found to be >6-fold enriched in HSV-1 L-particles. More strikingly, the tegument proteins UL36, UL37, UL21, and UL16 were depleted in BoHV-1 but not HSV-1 L-particles. We propose that these combined differences reflect the presence of truly segregated “inner” and “outer” teguments in BoHV-1, making it a critical system for studying the structure and process of tegumentation and envelopment.IMPORTANCEThe alphaherpesvirus family includes viruses that infect humans and animals. Hence, not only do they have a significant impact on human health, but they also have a substantial economic impact on the farming industry. While the pathogenic manifestations of the individual viruses differ from host to host, their relative genetic compositions suggest similarity at the molecular level. This study provides a side-by-side comparison of the particle outputs from the major human pathogen HSV-1 and the veterinary pathogen BoHV-1. Ultrastructural and proteomic analyses have revealed that both viruses have broadly similar morphogenesis profiles and infectious virus compositions. However, the demonstration that BoHV-1 has the capacity to generate vast numbers of capsidless enveloped particles that differ from those produced by HSV-1 in composition implies a divergence in the cell biology of these viruses that impacts our general understanding of alphaherpesvirus morphogenesis.


2009 ◽  
Vol 58 (10) ◽  
pp. 1283-1290 ◽  
Author(s):  
Claudio Cermelli ◽  
Carlotta Francesca Orsi ◽  
Alessandro Cuoghi ◽  
Andrea Ardizzoni ◽  
Enrico Tagliafico ◽  
...  

Recently, we showed that herpes simplex virus 1 (HSV-1)-infected monocytes have altered antifungal defences, in particular they show augmented phagocytosis of Candida albicans followed by a failure of the intracellular killing of the ingested fungi. On the basis of these functional data, comparative studies were carried out on the gene expression profile of cells infected with HSV-1 and/or C. albicans in order to investigate the molecular mechanisms underlying such virus-induced dysfunction. Affymetrix GeneChip technology was used to evaluate the cell transcription pattern, focusing on genes involved in phagocytosis, fungal adhesion, antimicrobial activity and apoptosis. The results indicated there was: (a) prevalent inhibition of opsonin-mediated phagocytosis, (b) upregulation of several pathways of antibody- and complement-independent phagocytosis, (c) inhibition of macrophage activation, (d) marked dysregulation of oxidative burst, (e) induction of apoptosis.


2018 ◽  
Vol 4 (4) ◽  
pp. 36 ◽  
Author(s):  
Maja Cokarić Brdovčak ◽  
Andreja Zubković ◽  
Igor Jurak

Viruses utilize microRNAs (miRNAs) in a vast variety of possible interactions and mechanisms, apparently far beyond the classical understanding of gene repression in humans. Likewise, herpes simplex virus 1 (HSV-1) expresses numerous miRNAs and deregulates the expression of host miRNAs. Several HSV-1 miRNAs are abundantly expressed in latency, some of which are encoded antisense to transcripts of important productive infection genes, indicating their roles in repressing the productive cycle and/or in maintenance/reactivation from latency. In addition, HSV-1 also exploits host miRNAs to advance its replication or repress its genes to facilitate latency. Here, we discuss what is known about the functional interplay between HSV-1 and the host miRNA machinery, potential targets, and the molecular mechanisms leading to an efficient virus replication and spread.


2019 ◽  
Vol 93 (17) ◽  
Author(s):  
Xing Liu ◽  
Rachel Matrenec ◽  
Michaela U. Gack ◽  
Bin He

ABSTRACTThe Us11 protein encoded by herpes simplex virus 1 (HSV-1) functions to impair autophagy; however, the molecular mechanisms of this inhibition remain to be fully established. Here, we report that the Us11 protein targetstripartite motifprotein 23 (TRIM23), which is a key regulator of autophagy-mediated antiviral defense mediated by TANK-binding kinase 1 (TBK1). In virus-infected cells, the Us11 protein drastically reduces the formation of autophagosomes mediated by TRIM23 or TBK1. This autophagy-inhibitory effect is attributable to the binding of the Us11 protein to the ARF domain in TRIM23. Furthermore, such interaction spatially excludes TBK1 from the TRIM23 complex that also contains heat shock protein 90 (Hsp90). When stably expressed alone in host cells, the Us11 protein recapitulates the observed phenotypes seen in cells infected with the US11-expressing or wild-type virus. Consistent with this, expression of the Us11 protein promotes HSV-1 growth, while expression of TRIM23 restricts HSV-1 replication in the absence of US11. Together, these results suggest that disruption of the TRIM23-TBK1 complex by the Us11 protein inhibits autophagy-mediated restriction of HSV-1 infection.IMPORTANCEAutophagy is an evolutionarily conserved process that restricts certain intracellular pathogens, including HSV-1. Although HSV-1 is well known to inhibit autophagy, little is known about the precise molecular mechanisms of autophagy inhibition. We demonstrate that the Us11 protein of HSV-1 spatially disrupts the TRIM23-TBK1 complex, which subsequently suppresses autophagy and autophagy-mediated virus restriction. Thus, expression of the Us11 protein facilitates HSV-1 replication. These data unveil new insight into viral escape from autophagy-mediated host restriction mechanisms.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 754
Author(s):  
Jun Arii

Herpes simplex virus 1 (HSV-1) replicates its genome and packages it into capsids within the nucleus. HSV-1 has evolved a complex mechanism of nuclear egress whereby nascent capsids bud on the inner nuclear membrane to form perinuclear virions that subsequently fuse with the outer nuclear membrane, releasing capsids into the cytosol. The viral-encoded nuclear egress complex (NEC) plays a crucial role in this vesicle-mediated nucleocytoplasmic transport. Nevertheless, similar system mediates the movement of other cellular macromolecular complexes in normal cells. Therefore, HSV-1 may utilize viral proteins to hijack the cellular machinery in order to facilitate capsid transport. However, little is known about the molecular mechanisms underlying this phenomenon. This review summarizes our current understanding of the cellular and viral factors involved in the nuclear egress of HSV-1 capsids.


2018 ◽  
Vol 92 (6) ◽  
Author(s):  
Chunfu Zheng

ABSTRACT Recognition of virus-derived nucleic acids by host pattern recognition receptors (PRRs) is crucial for early defense against viral infections. Recent studies revealed that PRRs also include several newly identified DNA sensors, most of which could activate the downstream adaptor stimulator of interferon genes (STING) and lead to the production of host antiviral factors. Herpes simplex virus 1 (HSV-1) is extremely successful in establishing effective infections, due to its capacity to counteract host innate antiviral responses. In this Gem, I summarize the most recent findings on the molecular mechanisms utilized by HSV-1 to target different steps of the cellular DNA-sensor-mediated antiviral signal pathway.


Author(s):  
Z. Hong Zhou ◽  
Jing He ◽  
Joanita Jakana ◽  
J. D. Tatman ◽  
Frazer J. Rixon ◽  
...  

Herpes simplex virus-1 (HSV-1) is a ubiquitous virus which is implicated in diseases ranging from self-curing cold sores to life-threatening infections. The 2500 Å diameter herpes virion is composed of a glycoprotein spike containing, lipid envelope, enclosing a protein layer (the tegument) in which is embedded the capsid (which contains the dsDNA genome). The B-, and A- and C-capsids, representing different morphogenetic stages in HSV-1 infected cells, are composed of 7, and 5 structural proteins respectively. The three capsid types are organized in similar T=16 icosahedral shells with 12 pentons, 150 hexons, and 320 connecting triplexes. Our previous 3D structure study at 26 Å revealed domain features of all these structural components and suggested probable locations for the outer shell proteins, VP5, VP26, VP19c and VP23. VP5 makes up most of both pentons and hexons. VP26 appeared to bind to the VP5 subunit in hexon but not to that in penton.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
David Shahnazaryan ◽  
Rana Khalil ◽  
Claire Wynne ◽  
Caroline A. Jefferies ◽  
Joan Ní Gabhann-Dromgoole ◽  
...  

AbstractHerpes simplex keratitis (HSK), caused by herpes simplex virus type 1 (HSV-1) infection, is the commonest cause of infectious blindness in the developed world. Following infection the virus is initially suspended in the tear film, where it encounters a multi-pronged immune response comprising enzymes, complement, immunoglobulins and crucially, a range of anti-viral and pro-inflammatory cytokines. However, given that HSV-1 can overcome innate immune responses to establish lifelong latency throughout a susceptible individual’s lifetime, there is significant interest in understanding the mechanisms employed by HSV-1 to downregulate the anti-viral type I interferon (IFN) mediated immune responses. This study aimed to investigate the interactions between infected cell protein (ICP)0 and key elements of the IFN pathway to identify possible novel targets that contribute to viral immune evasion. Reporter gene assays demonstrated the ability of ICP0 to inhibit type I IFN activity downstream of pathogen recognition receptors (PRRs) which are known to be involved in host antiviral defences. Further experiments identified interferon regulatory factor (IRF)7, a driver of type I IFN, as a potential target for ICP0. These findings increase our understanding of the pathogenesis of HSK and suggest IRF7 as a potential therapeutic target.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 196
Author(s):  
Sara Artusi ◽  
Emanuela Ruggiero ◽  
Matteo Nadai ◽  
Beatrice Tosoni ◽  
Rosalba Perrone ◽  
...  

The herpes simplex virus 1 (HSV-1) genome is extremely rich in guanine tracts that fold into G-quadruplexes (G4s), nucleic acid secondary structures implicated in key biological functions. Viral G4s were visualized in HSV-1 infected cells, with massive virus cycle-dependent G4-formation peaking during viral DNA replication. Small molecules that specifically interact with G4s have been shown to inhibit HSV-1 DNA replication. We here investigated the antiviral activity of TMPyP4, a porphyrin known to interact with G4s. The analogue TMPyP2, with lower G4 affinity, was used as control. We showed by biophysical analysis that TMPyP4 interacts with HSV-1 G4s, and inhibits polymerase progression in vitro; in infected cells, it displayed good antiviral activity which, however, was independent of inhibition of virus DNA replication or entry. At low TMPyP4 concentration, the virus released by the cells was almost null, while inside the cell virus amounts were at control levels. TEM analysis showed that virus particles were trapped inside cytoplasmatic vesicles, which could not be ascribed to autophagy, as proven by RT-qPCR, western blot, and immunofluorescence analysis. Our data indicate a unique mechanism of action of TMPyP4 against HSV-1, and suggest the unprecedented involvement of currently unknown G4s in viral or antiviral cellular defense pathways.


Sign in / Sign up

Export Citation Format

Share Document