scholarly journals Herpes simplex virus 1 targets IRF7 via ICP0 to limit type I IFN induction

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
David Shahnazaryan ◽  
Rana Khalil ◽  
Claire Wynne ◽  
Caroline A. Jefferies ◽  
Joan Ní Gabhann-Dromgoole ◽  
...  

AbstractHerpes simplex keratitis (HSK), caused by herpes simplex virus type 1 (HSV-1) infection, is the commonest cause of infectious blindness in the developed world. Following infection the virus is initially suspended in the tear film, where it encounters a multi-pronged immune response comprising enzymes, complement, immunoglobulins and crucially, a range of anti-viral and pro-inflammatory cytokines. However, given that HSV-1 can overcome innate immune responses to establish lifelong latency throughout a susceptible individual’s lifetime, there is significant interest in understanding the mechanisms employed by HSV-1 to downregulate the anti-viral type I interferon (IFN) mediated immune responses. This study aimed to investigate the interactions between infected cell protein (ICP)0 and key elements of the IFN pathway to identify possible novel targets that contribute to viral immune evasion. Reporter gene assays demonstrated the ability of ICP0 to inhibit type I IFN activity downstream of pathogen recognition receptors (PRRs) which are known to be involved in host antiviral defences. Further experiments identified interferon regulatory factor (IRF)7, a driver of type I IFN, as a potential target for ICP0. These findings increase our understanding of the pathogenesis of HSK and suggest IRF7 as a potential therapeutic target.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Longzhen He ◽  
Baocheng Wang ◽  
Yuanyuan Li ◽  
Leqing Zhu ◽  
Peiling Li ◽  
...  

The innate immune response is the first line defense against viral infections. Novel genes involved in this system are continuing to emerge. SLC15A3, a proton-coupled histidine and di-tripeptide transporter that was previously found in lysosomes, has been reported to inhibit chikungunya viral replication in host cells. In this study, we found that SLC15A3 was significantly induced by DNA virus herpes simplex virus-1(HSV-1) in monocytes from human peripheral blood mononuclear cells. Aside from monocytes, it can also be induced by HSV-1 in 293T, HeLa cells, and HaCaT cells. Overexpression of SLC15A3 in 293T cells inhibits HSV-1 replication and enhances type I and type III interferon (IFN) responses, while silencing SLC15A3 leads to enhanced HSV-1 replication with reduced IFN production. Moreover, we found that SLC15A3 interacted with MAVS and STING and potentiated MAVS- and STING-mediated IFN production. These results demonstrate that SLC15A3 participates in anti-HSV-1 innate immune responses by regulating MAVS- and STING-mediated signaling pathways.


2009 ◽  
Vol 83 (23) ◽  
pp. 12399-12406 ◽  
Author(s):  
Vineet D. Menachery ◽  
David A. Leib

ABSTRACT The type I interferon (IFN) cascade is critical in controlling viral replication and pathogenesis. Recognition pathways triggered by viral infection rapidly induce the type I IFN cascade, often in an IFN regulatory factor 3 (IRF-3)-dependent fashion. This dependence predicts that loss of IRF-3 would render early recognition pathways inoperative and thereby impact virus replication, but this has not been observed previously with herpes simplex virus type 1 (HSV-1) in vitro. In this study, HSV-1-infected IRF-3−/− bone marrow-derived dendritic cells (BMDCs) and macrophages supported increased HSV replication compared to control cells. In addition, IRF-3-deficient BMDCs exhibited delayed type I IFN synthesis compared to control cells. However, while IFN pretreatment of IRF-3−/− BMDCs resulted in reduced virus titers, a far greater reduction was seen after IFN treatment of wild-type cells. This suggests that even in the presence of exogenously supplied IFN, IRF-3−/− BMDCs are inherently defective in the control of HSV-1 replication. Together, these results demonstrate a critical role for IRF-3-mediated pathways in controlling HSV-1 replication in cells of the murine immune system.


2016 ◽  
Vol 90 (19) ◽  
pp. 8661-8672 ◽  
Author(s):  
Maitreyi Shivkumar ◽  
Clara Lawler ◽  
Ricardo Milho ◽  
Philip G. Stevenson

ABSTRACTHerpes simplex virus 1 (HSV-1) enters mice via olfactory epithelial cells and then colonizes the trigeminal ganglia (TG). Most TG nerve endings are subepithelial, so this colonization implies subepithelial viral spread, where myeloid cells provide an important line of defense. The outcome of infection of myeloid cells by HSV-1in vitrodepends on their differentiation state; the outcomein vivois unknown. Epithelial HSV-1 commonly infected myeloid cells, and Cre-Lox virus marking showed nose and lung infections passing through LysM-positive (LysM+) and CD11c+cells. In contrast, subcapsular sinus macrophages (SSMs) exposed to lymph-borne HSV-1 were permissive only when type I interferon (IFN-I) signaling was blocked; normally, their infection was suppressed. Thus, the outcome of myeloid cell infection helped to determine the HSV-1 distribution: subepithelial myeloid cells provided a route of spread from the olfactory epithelium to TG neurons, while SSMs blocked systemic spread.IMPORTANCEHerpes simplex virus 1 (HSV-1) infects most people and can cause severe disease. This reflects its persistence in nerve cells that connect to the mouth, nose, eye, and face. Established infection seems impossible to clear. Therefore, we must understand how it starts. This is difficult in humans, but mice show HSV-1 entry via the nose and then spread to its preferred nerve cells. We show that this spread proceeds in part via myeloid cells, which normally function in host defense. Myeloid infection was productive in some settings but was efficiently suppressed by interferon in others. Therefore, interferon acting on myeloid cells can stop HSV-1 spread, and enhancing this defense offers a way to improve infection control.


2019 ◽  
Vol 93 (23) ◽  
Author(s):  
Maxime Chapon ◽  
Kislay Parvatiyar ◽  
Saba Roghiyh Aliyari ◽  
Jeffrey S. Zhao ◽  
Genhong Cheng

ABSTRACT In spite of several decades of research focused on understanding the biology of human herpes simplex virus 1 (HSV-1), no tool has been developed to study its genome in a high-throughput fashion. Here, we describe the creation of a transposon insertion mutant library of the HSV-1 genome. Using this tool, we aimed to identify novel viral regulators of type I interferon (IFN-I). HSV-1 evades the host immune system by encoding viral proteins that inhibit the type I interferon response. Applying differential selective pressure, we identified the three strongest viral IFN-I regulators in HSV-1. We report that the viral polymerase processivity factor UL42 interacts with the host transcription factor IFN regulatory factor 3 (IRF-3), inhibiting its phosphorylation and downstream beta interferon (IFN-β) gene transcription. This study represents a proof of concept for the use of high-throughput screening of the HSV-1 genome in investigating viral biology and offers new targets both for antiviral therapy and for oncolytic vector design. IMPORTANCE This work is the first to report the use of a high-throughput mutagenesis method to study the genome of HSV-1. We report three novel viral proteins potentially involved in regulating the host type I interferon response. We describe a novel mechanism by which the viral protein UL42 is able to suppress the production of beta interferon. The tool we introduce in this study can be used to study the HSV-1 genome in great detail to better understand viral gene functions.


2003 ◽  
Vol 52 (3) ◽  
pp. 223-228 ◽  
Author(s):  
Mingzhao Zhu ◽  
Xuemei Xu ◽  
Hongwei Liu ◽  
Xiaojuan Liu ◽  
Sheng Wang ◽  
...  

In this study, the immune-modulatory and vaccine effects of using an interleukin (IL)-18 expression plasmid as a genetic adjuvant to enhance DNA vaccine-induced immune responses were investigated in a mouse herpes simplex virus 1 (HSV-1) challenge model. BALB/c mice were immunized by three intramuscular inoculations of HSV-1 glycoprotein D (gD) DNA vaccine alone or in combination with a plasmid expressing mature IL-18 peptide. Both the serum IgG2a/IgG1 ratio and T helper 1-type (Th1) cytokines [IL-2 and interferon (IFN)-γ] were increased significantly by the co-injection of the IL-18 plasmid compared with the injection of gD DNA alone. However, the production of IL-10 was inhibited by IL-18 plasmid co-injection. Furthermore, IL-18 plasmid co-injection efficiently enhanced antigen-specific lymphocyte proliferation and the delayed-type hypersensitivity response. When mice were challenged with HSV-1 at the cornea, co-injection of IL-18 plasmid with gD DNA vaccine showed significantly better protection, manifested as lower corneal lesion scores and faster recovery. These experiments indicate that co-injection of an IL-18 plasmid with gD DNA vaccine efficiently induces Th1-dominant immune responses and improves the protective effect against HSV-1 infection.


2021 ◽  
Author(s):  
Michiel van Gent ◽  
Jessica J. Chiang ◽  
Santoshi Muppala ◽  
Cindy Chiang ◽  
Walid Azab ◽  
...  

Recent studies demonstrated that the signaling activity of the cytosolic pathogen sensor retinoic acid-inducible gene-I (RIG-I) is modulated by a variety of post-translational modifications (PTMs) to fine-tune the antiviral type I interferon (IFN) response. Whereas K63-linked ubiquitination of the RIG-I caspase activation and recruitment domains (CARDs) catalyzed by TRIM25 or other E3 ligases activates RIG-I, phosphorylation of RIG-I at S8 and T170 represses RIG-I signal transduction by preventing the TRIM25-RIG-I interaction and subsequent RIG-I ubiquitination. While strategies to suppress RIG-I signaling by interfering with its K63-polyubiquitin-dependent activation have been identified for several viruses, evasion mechanisms that directly promote RIG-I phosphorylation to escape antiviral immunity are unknown. Here, we show that the serine/threonine (Ser/Thr) kinase US3 of herpes simplex virus 1 (HSV-1) binds to RIG-I and phosphorylates RIG-I specifically at S8. US3-mediated phosphorylation suppressed TRIM25-mediated RIG-I ubiquitination, RIG-I-MAVS binding, and type I IFN induction. We constructed a mutant HSV-1 encoding a catalytically-inactive US3 protein (K220A) and found that, in contrast to the parental virus, the US3 mutant HSV-1 is unable to phosphorylate RIG-I at S8 and elicited higher levels of type I IFNs, IFN-stimulated genes (ISGs), and proinflammatory cytokines in a RIG-I-dependent manner. Finally, we show that this RIG-I evasion mechanism is conserved among the alphaherpesvirus US3 kinase family. Collectively, our study reveals a novel immune evasion mechanism of herpesviruses in which their US3 kinases phosphorylate the sensor RIG-I to keep it in the signaling-repressed state. IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes life-long latency in the majority of the human population worldwide. HSV-1 occasionally reactivates to produce infectious virus and to facilitate dissemination. While often remaining subclinical, both primary infection and reactivation occasionally cause debilitating eye diseases, which can lead to blindness, as well as life-threatening encephalitis and newborn infections. To identify new therapeutic targets for HSV-1-induced diseases, it is important to understand the HSV-1-host interactions that may influence infection outcome and disease. Our work uncovered direct phosphorylation of the pathogen sensor RIG-I by alphaherpesvirus-encoded kinases as a novel viral immune escape strategy and also underscores the importance of RNA sensors in surveilling DNA virus infection.


2018 ◽  
Vol 92 (22) ◽  
Author(s):  
Ping Rao ◽  
Xiangshu Wen ◽  
Jae Ho Lo ◽  
Seil Kim ◽  
Xin Li ◽  
...  

ABSTRACTHerpes simplex virus 1 (HSV-1) is one of the most prevalent herpesviruses in humans and represents a constant health threat to aged and immunocompromised populations. How HSV-1 interacts with the host immune system to efficiently establish infection and latency is only partially known. CD1d-restricted NKT cells are a critical arm of the host innate immune system and play potent roles in anti-infection and antitumor immune responses. We discovered previously that upon infection, HSV-1 rapidly and efficiently downregulates CD1d expression on the cell surface and suppresses the function of NKT cells. Furthermore, we identified the viral serine/threonine protein kinase US3 as a major viral factor downregulating CD1d during infection. Interestingly, neither HSV-1 nor its US3 protein efficiently inhibits mouse CD1d expression, suggesting that HSV-1 has coevolved with the human immune system to specifically suppress human CD1d (hCD1d) and NKT cell function for its pathogenesis. This is consistent with the fact that wild-type mice are mostly resistant to HSV-1 infection. On the other hand,in vivoinfection of CD1d-humanized mice (hCD1d knock-in mice) showed that HSV-1 can indeed evade hCD1d function and establish infection in these mice. We also report here that US3-deficient viruses cannot efficiently infect hCD1d knock-in mice but infect mice lacking all NKT cells at a higher efficiency. Together, these studies supported HSV-1 evasion of human CD1d and NKT cell function as an important pathogenic factor for the virus. Our results also validated the potent roles of NKT cells in antiherpesvirus immune responses and pointed to the potential of NKT cell ligands as adjuvants for future vaccine development.IMPORTANCEHerpes simplex virus 1 (HSV-1) is among the most common human pathogens. Little is known regarding the exact mechanism by which this virus evades the human immune system, particularly the innate immune system. We reported previously that HSV-1 employs its protein kinase US3 to modulate the expression of the key antigen-presenting molecule, CD1d, so as to evade the antiviral function of NKT cells. Here we demonstrated that the virus has coevolved with the human CD1d and NKT cell system and that NKT cells indeed play potent roles in anti-HSV immune responses. These studies point to the great potential of exploring NKT cell ligands as adjuvants for HSV vaccines.


2015 ◽  
Vol 89 (8) ◽  
pp. 4214-4226 ◽  
Author(s):  
Yi Zheng ◽  
Haidong Gu

ABSTRACTInfected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) is a key regulator in both lytic and latent infections. In lytic infection, an important early event is the colocalization of ICP0 to nuclear domain 10 (ND10), the discrete nuclear bodies that impose restrictions on viral expression. ICP0 contains an E3 ubiquitin ligase that degrades promyelocytic leukemia protein (PML) and Sp100, two major components of ND10, and disperses ND10 to alleviate repression. We previously reported that the association between ICP0 and ND10 is a dynamic process that includes three steps: adhesion, fusion, and retention. ICP0 residues 245 to 474, defined as ND10 entry signal (ND10-ES), is a region required for the fusion step. Without ND10-ES, ICP0 adheres at the ND10 surface but fails to enter. In the present study, we focus on characterizing ND10-ES. Here we report the following. (i) Fusion of ICP0 with ND10 relies on specific sequences located within ND10-ES. Replacement of ND10-ES by the corresponding region from ORF61 of varicella-zoster virus did not rescue ND10 fusion. (ii) Three tandem ND10 fusion segments (ND10-FS1, ND10-FS2, and ND10-FS3), encompassing 200 amino acids within ND10-ES, redundantly facilitate fusion. Each of the three segments is sufficient to independently drive the fusion process, but none of the segments by themselves are necessary for ND10 fusion. Only when all three segments are deleted is fusion blocked. (iii) The SUMO interaction motif located within ND10-FS2 is not required for ND10 fusion but is required for the complete degradation of PML, suggesting that PML degradation and ND10 fusion are regulated by different molecular mechanisms.IMPORTANCEND10 nuclear bodies are part of the cell-intrinsic antiviral defenses that restrict viral gene expression upon virus infection. As a countermeasure, infected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) localizes to ND10s, degrades the ND10 organizer, and disperses ND10 components in order to alleviate repression. We studied the ICP0-ND10 association to delineate elements important for this dynamic interaction and to understand its role in viral replication and host defense. In this work, we show that ICP0 contains three redundant segments to ensure an effective mergence of ICP0 with ND10 nuclear bodies. This is the first study to systematically investigate ICP0 elements that are important for ICP0-ND10 fusion.


2008 ◽  
Vol 14 (9) ◽  
pp. 1199-1207 ◽  
Author(s):  
A Sanna ◽  
YM Huang ◽  
G Arru ◽  
ML Fois ◽  
H Link ◽  
...  

Objective We hypothesized that autoaggressive immune responses observed in multiple sclerosis (MS) could be associated with an imbalance in proportion of immune cell subsets and in cytokine production in response to infection, including viruses. Methods We collected blood mononuclear cells (MNC) from 23 patients with MS and 23 sex- and age-matched healthy controls (HC) from the island of Sardinia, Italy, where the prevalence of MS is extraordinarily high. Using flow cytometry, we studied MNC for expression of blood dendritic cell antigens (BDCA)-2 and BDCA-4 surface markers reflecting the proportion of plasmacytoid dendritic cells (pDC) that produce type I interferons (IFNs) after virus challenge and promote Th2/anti-inflammtory cytokine production. In parallel, pro-inflammatory (interleukin [IL]-2, IL-12, IFN-γ), anti-inflammatory (IL-4, IL-10), and immuno-regulatory/pleiotropic cytokines (type I IFNs including IFN-α and β, IL-6) were measured before and after an in vitro exposure to herpes simplex virus type 1 (HSV-1). Results The subset of lineage negative (lin−), BDCA-2+ cells was lower in patients with MS compared with HC (0.08 ± 0.02% vs 0.24 ± 0.02%; P < 0.001). A similar pattern was observed for lin−BDCA-4+ cells (0.08 ± 0.02% vs 0.17% ± 0.03; P < 0.01). Spontaneous productions of IL-6 (45 ± 10 pg/mL vs 140 ± 26 pg/mL; P < 0.01) and IL-10 (17 ± 0.4 pg/mL vs 21 ± 1 pg/mL; P < 0.05) by MNC were lower in patients with MS compared with HC. Spontaneous production of IL-6 (6.5 ± 0.15 pg/mL vs 21 ± 5 pg/mL; P < 0.01 and IL-10 (11 ± 1 pg/mL vs 14 ± 3 pg/mL; P < 0.05) by pDC was also lower in patients with MS compared with HC. Exposure of MNC to HSV-1 showed, in both patients with MS and HC, increased production of IFN-α, IL-6, and IL-10 but decreased production of IL-4. In response to HSV-1 exposure, productions of IL-6 (165 ± 28 pg/mL vs 325 ± 35 pg/mL; P < 0.01) and IL-10 (27 ± 3 vs 33 ± 3 P < 0.05) by MNC as well as by pDC (IL-6: 28 ± 7 vs 39 ± 12 P < 0.05; IL-10: 14 ± 1 vs 16 ± 3 P < 0.05) were lower in patients with MS compared with HC. Conclusion The results implicate a new evidence for altered immune cells and reduced immune responses in response to viral challenge in MS.


Sign in / Sign up

Export Citation Format

Share Document