scholarly journals Acinetobacter variabilis sp. nov. (formerly DNA group 15 sensu Tjernberg & Ursing), isolated from humans and animals

2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 857-863 ◽  
Author(s):  
Lenka Krizova ◽  
Jana McGinnis ◽  
Martina Maixnerova ◽  
Matej Nemec ◽  
Laurent Poirel ◽  
...  

We aimed to define the taxonomic status of 16 strains which were phenetically congruent with Acinetobacter DNA group 15 described by Tjernberg & Ursing in 1989. The strains were isolated from a variety of human and animal specimens in geographically distant places over the last three decades. Taxonomic analysis was based on an Acinetobacter -targeted, genus-wide approach that included the comparative sequence analysis of housekeeping, protein-coding genes, whole-cell profiling based on matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), an array of in-house physiological and metabolic tests, and whole-genome comparative analysis. Based on analyses of the rpoB and gyrB genes, the 16 strains formed respective, strongly supported clusters clearly separated from the other species of the genus Acinetobacter . The distinctness of the group at the species level was indicated by average nucleotide identity values of ≤82 % between the whole genome sequences of two of the 16 strains (NIPH 2171T and NIPH 899) and those of the known species. In addition, the coherence of the group was also supported by MALDI-TOF MS. All 16 strains were non-haemolytic and non-gelatinase-producing, grown at 41 °C and utilized a rather limited number of carbon sources. Virtually every strain displayed a unique combination of metabolic and physiological features. We conclude that the 16 strains represent a distinct species of the genus Acinetobacter , for which the name Acinetobacter variabilis sp. nov. is proposed to reflect its marked phenotypic heterogeneity. The type strain is NIPH 2171T ( = CIP 110486T = CCUG 26390T = CCM 8555T).

2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 4007-4015 ◽  
Author(s):  
Annemieke Smet ◽  
Piet Cools ◽  
Lenka Krizova ◽  
Martina Maixnerova ◽  
Ondrej Sedo ◽  
...  

We previously reported the presence of an OXA-23 carbapenemase in an undescribed species of the genus Acinetobacter isolated from horse dung at the Faculty of Veterinary Medicine, Ghent University, Belgium. Here we include six strains to corroborate the delineation of this taxon by phenotypic characterization, DNA–DNA hybridization, 16S rRNA gene and rpoB sequence analysis, % G+C determination, MALDI-TOF MS and fatty acid analysis. The nearly complete 16S rRNA gene sequence of strain UG 60467T showed the highest similarities with those of the type strains of Acinetobacter bouvetii (98.4 %), Acinetobacter haemolyticus (97.7 %), and Acinetobacter schindleri (97.2 %). The partial rpoB sequence of strain UG 60467T showed the highest similarities with ‘Acinetobacter bohemicus’ ANC 3994 (88.6 %), A. bouvetii NIPH 2281 (88.6 %) and A. schindleri CIP 107287T (87.3 %). Whole-cell MALDI-TOF MS analyses supported the distinctness of the group at the protein level. The predominant fatty acids of strain UG 60467T were C12 : 0 3-OH, C12 : 0, C16 : 0, C18 : 1ω9c and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). Strains UG 60467T and UG 60716 showed a DNA–DNA relatedness of 84 % with each other and a DNA–DNA relatedness with A. schindleri LMG 19576T of 17 % and 20 %, respectively. The DNA G+C content of strain UG 60467T was 39.6 mol%. The name Acinetobacter gandensis sp. nov. is proposed for the novel taxon. The type strain is UG 60467T ( = ANC 4275T = LMG 27960T = DSM 28097T).


Author(s):  
Anissa Amara Korba ◽  
Hakim Lounici ◽  
Malia Kainiu ◽  
Antony T. Vincent ◽  
Jean-François Mariet ◽  
...  

Leptospira strains were isolated from freshwater sampled at four sites in Algeria and characterized by whole-genome sequencing and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The cells were spiral-shaped and motile. Phylogenetic and MALDI-TOF MS analyses showed that the strains can be clearly distinguished from the other described species in the genus Leptospir a, therefore representing two novel species of the pathogen subclade P1 and two novel species of the saprophyte subclade S1. The names Leptospira ainlahdjerensis sp. nov. (type strain 201903070T=KIT0297T=CIP111912T), Leptospira ainazelensis sp. nov. (201903071T=KIT0298T=CIP111913T), Leptospira abararensis sp. nov. (201903074T=KIT0299T=CIP111914T) and Leptospira chreensis (201903075T=KIT0300T=CIP111915T) are proposed.


2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 2944-2948 ◽  
Author(s):  
Collette Fitzgerald ◽  
Zheng chao Tu ◽  
Mary Patrick ◽  
Tracy Stiles ◽  
Andy J. Lawson ◽  
...  

A polyphasic study was undertaken to determine the taxonomic position of 13 Campylobacter fetus -like strains from humans (n = 8) and reptiles (n = 5). The results of matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS and genomic data from sap analysis, 16S rRNA gene and hsp60 sequence comparison, pulsed-field gel electrophoresis, amplified fragment length polymorphism analysis, DNA–DNA hybridization and whole genome sequencing demonstrated that these strains are closely related to C. fetus but clearly differentiated from recognized subspecies of C. fetus . Therefore, this unique cluster of 13 strains represents a novel subspecies within the species C. fetus , for which the name Campylobacter fetus subsp. testudinum subsp. nov. is proposed, with strain 03-427T ( = ATCC BAA-2539T = LMG 27499T) as the type strain. Although this novel taxon could not be differentiated from C. fetus subsp. fetus and C. fetus subsp. venerealis using conventional phenotypic tests, MALDI-TOF MS revealed the presence of multiple phenotypic biomarkers which distinguish Campylobacter fetus subsp. testudinum subsp. nov. from recognized subspecies of C. fetus .


Microbiology ◽  
2020 ◽  
Vol 166 (6) ◽  
pp. 522-530
Author(s):  
Virginia Hill ◽  
Peter Kuhnert ◽  
Matthias Erb ◽  
Ricardo A. R. Machado

Species of the bacterial genus Photorhabus live in a symbiotic relationship with Heterorhabditis entomopathogenic nematodes. Besides their use as biological control agents against agricultural pests, some Photorhabdus species are also a source of natural products and are of medical interest due to their ability to cause tissue infections and subcutaneous lesions in humans. Given the diversity of Photorhabdus species, rapid and reliable methods to resolve this genus to the species level are needed. In this study, we evaluated the potential of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of Photorhabdus species. To this end, we established a collection of 54 isolates consisting of type strains and multiple field strains that belong to each of the validly described species and subspecies of this genus. Reference spectra for the strains were generated and used to complement a currently available database. The extended reference database was then used for identification based on the direct transfer sample preparation method and the protein fingerprint of single colonies. High-level discrimination of distantly related species was observed. However, lower discrimination was observed with some of the most closely related species and subspecies. Our results therefore suggest that MALDI-TOF MS can be used to correctly identify Photorhabdus strains at the genus and species level, but has limited resolution power for closely related species and subspecies. Our study demonstrates the suitability and limitations of MALDI-TOF-based identification methods for assessment of the taxonomic position and identification of Photorhabdus isolates.


2020 ◽  
Vol 70 (6) ◽  
pp. 3755-3762 ◽  
Author(s):  
Chien-Hsun Huang ◽  
Chih-Chieh Chen ◽  
Jong-Shian Liou ◽  
Ai-Yun Lee ◽  
Jochen Blom ◽  
...  

Taxonomic relationships between Lactobacillus casei , Lactobacillus paracasei and Lactobacillus zeae have long been debated. Results of previous analyses have shown that overall genome relatedness indices (such as average nucleotide identity and core nucleotide identity) between the type strains L. casei ATCC 393T and L. zeae ATCC 15820T were 94.6 and 95.3 %, respectively, which are borderline for species definition. However, the digital DNA‒DNA hybridization value was 57.3 %, which was clearly lower than the species delineation threshold of 70 %, and hence raised the possibility that L. casei could be reclassified into two species. To re-evaluate the taxonomic relationship of these taxa, multilocus sequence analysis (MLSA) based on the concatenated five housekeeping gene (dnaJ, dnaK, mutL, pheS and yycH) sequences, phylogenomic and core genome multilocus sequence typing analyses, gene presence and absence profiles using pan-genome analysis, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling analysis, cellular fatty acid compositions, and phenotype analysis were carried out. The results of phenotypic characterization, MLSA, whole-genome sequence-based analyses and MALDI-TOF MS profiling justified an independent species designation for the L. zeae strains, and supported an emended the description of the name of Lactobacillus zeae (ex Kuznetsov 1956) Dicks et al. 1996, with ATCC 15820T (=DSM 20178T=BCRC 17942T) as the type strain.


2020 ◽  
Vol 2 (8) ◽  
Author(s):  
M.C. Legaria ◽  
S.D. García ◽  
V. Tudanca ◽  
C. Barberis ◽  
L. Cipolla ◽  
...  

Clostridium ramosum is an enteric anaerobic, endospore-forming, gram-positive rod with a low GC content that is rarely associated with disease in humans. We present a case of C. ramosum bacteraemia. To the best of our knowledge, this is the second case of C. ramosum bacteraemia in an elderly patient presenting with fever, abdominal pain and bilious emesis. We highlight the Gram stain variability, the lack of visualization of spores and the atypical morphology of the colonies that showed C. ramosum in a polymicrobial presentation that initially appeared to show monomicrobial bacteraemia. The microorganism was rapidly identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We present a comprehensive literature review of 32 cases of clinical infections by C. ramosum in which we describe, if available, sex, age, clinical symptoms, predisposing conditions, other organisms present in the blood culture, other samples with C. ramosum , identification methodology, treatment and outcome.


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Jie Lin ◽  
Chunquan Xu ◽  
Renchi Fang ◽  
Jianming Cao ◽  
Xiucai Zhang ◽  
...  

ABSTRACT The goal was to investigate the mechanisms of colistin resistance and heteroresistance in Pseudomonas aeruginosa clinical isolates. Colistin resistance was determined by the broth microdilution method. Colistin heteroresistance was evaluated by population analysis profiling. Time-kill assays were also conducted. PCR sequencing was performed to detect the resistance genes among (hetero)resistant isolates, and quantitative real-time PCR assays were performed to determine their expression levels. Pulsed-field gel electrophoresis and multilocus sequence typing were performed. Lipid A characteristics were determined via matrix-assisted laser desorption–ionization time of flight mass spectrometry (MALDI-TOF MS). Two resistant isolates and 9 heteroresistant isolates were selected in this study. Substitutions in PmrB were detected in 2 resistant isolates. Among heteroresistant isolates, 8 of 9 heteroresistant isolates had nonsynonymous PmrB substitutions, and 2 isolates, including 1 with a PmrB substitution, had PhoQ alterations. Correspondingly, the expression levels of pmrA or phoP were upregulated in PmrB- or PhoQ-substituted isolates. One isolate also found alterations in ParRS and CprRS. The transcript levels of the pmrH gene were observed to increase across all investigated isolates. MALDI-TOF MS showed additional 4-amino-4-deoxy-l-arabinose (l-Ara4N) moieties in lipid A profiles in (hetero)resistant isolates. In conclusion, both colistin resistance and heteroresistance in P. aeruginosa in this study mainly involved alterations of the PmrAB regulatory system. There were strong associations between mutations in specific genetic loci for lipid A synthesis and regulation of modifications to lipid A. The transition of colistin heteroresistance to resistance should be addressed in future clinical surveillance.


2019 ◽  
Vol 57 (11) ◽  
Author(s):  
Matthew C. Canver ◽  
Tsigereda Tekle ◽  
Samantha T. Compton ◽  
Katrina Callan ◽  
Eileen M. Burd ◽  
...  

ABSTRACT The Staphylococcus intermedius group (SIG) is a collection of coagulase-positive staphylococci consisting of four distinct species, namely, Staphylococcus cornubiensis, Staphylococcus delphini, Staphylococcus intermedius, and Staphylococcus pseudintermedius. SIG members are animal pathogens and rare causes of human infection. Accurate identification of S. pseudintermedius has important implications for interpretation of antimicrobial susceptibility testing data and may be important for other members of the group. Therefore, we sought to evaluate the performance of five commercially available identification platforms with 21 S. delphini isolates obtained from a variety of animal and geographic sources. Here, we show that automated biochemical platforms were unable to identify S. delphini to the species level, a function of its omission from their databases, but could identify isolates to the SIG level with various degrees of success. However, all automated systems misidentified at least one isolate as Staphylococcus aureus. One matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) system was able to identify S. delphini to the species level, suggesting that MALDI-TOF MS is the best option for distinguishing members of the SIG. With the exception of S. pseudintermedius, it is unclear if other SIG members should be routinely identified to the species level; however, as our understanding of their role in animal and human diseases increases, it may be necessary and important to do so.


Author(s):  
Hisami Kobayashi ◽  
Yasuhiro Tanizawa ◽  
Mitsuo Sakamoto ◽  
Moriya Ohkuma ◽  
Masanori Tohno

The taxonomic status of the species Clostridium methoxybenzovorans was assessed. The 16S rRNA gene sequence, whole-genome sequence and phenotypic characterizations suggested that the type strain deposited in the American Type Culture Collection ( C. methoxybenzovorans ATCC 700855T) is a member of the species Eubacterium callanderi . Hence, C. methoxybenzovorans ATCC 700855T cannot be used as a reference for taxonomic study. The type strain deposited in the German Collection of Microorganism and Cell Cultures GmbH (DSM 12182T) is no longer listed in its online catalogue. Also, both the 16S rRNA gene and the whole-genome sequences of the original strain SR3T showed high sequence identity with those of Lacrimispora indolis (recently reclassified from Clostridium indolis ) as the most closely related species. Analysis of the two genomes showed average nucleotide identity based on blast and digital DNA–DNA hybridization values of 98.3 and 87.9 %, respectively. Based on these results, C. methoxybenzovorans SR3T was considered to be a member of L. indolis .


2020 ◽  
Vol 8 (2) ◽  
pp. 301
Author(s):  
Fernando Sánchez-Juanes ◽  
Vanessa Teixeira-Martín ◽  
José Manuel González-Buitrago ◽  
Encarna Velázquez ◽  
José David Flores-Félix

Several artisanal cheeses are elaborated in European countries, being commonly curdled with rennets of animal origin. However, in some Spanish regions some cheeses of type “Torta” are elaborated using Cynara cardunculus L. rennets. Two of these cheeses, “Torta del Casar” and “Torta de Trujillo”, are elaborated in Cáceres province with ewe’s raw milk and matured over at least 60 days without starters. In this work, we identified the lactic acid bacteria present in these cheeses using MALDI-TOF MS and pheS gene analyses, which showed they belong to the species Lactobacillus curvatus, Lactobacillus diolivorans, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus rhamnosus, Lactococcus lactis and Leuconostoc mesenteroides. The pheS gene analysis also allowed the identification of the subspecies La. plantarum subsp. plantarum, La. paracasei subsp. paracasei and Le. mesenteroides subsp. jonggajibkimchii. Low similarity values were found in this gene for some currently accepted subspecies of Lc. lactis and for the two subspecies of La. plantarum, and values near to 100% for the subspecies of Le. mesenteroides and La. paracasei. These results, which were confirmed by the calculated ANIb and dDDH values of their whole genomes, showed the need to revise the taxonomic status of these species and their subspecies.


Sign in / Sign up

Export Citation Format

Share Document