Shinella fusca sp. nov., isolated from domestic waste compost

2010 ◽  
Vol 60 (1) ◽  
pp. 144-148 ◽  
Author(s):  
Ivone Vaz-Moreira ◽  
Cátia Faria ◽  
Ana R. Lopes ◽  
Liselott A. Svensson ◽  
Edward R. B. Moore ◽  
...  

A bacterium, designated strain DC-196T, isolated from kitchen refuse compost was analysed by using a polyphasic approach. Strain DC-196T was characterized as a Gram-negative short rod that was catalase- and oxidase-positive, and able to grow at 10–40 °C, pH 6–9 and in NaCl concentrations as high as 3 %. Chemotaxonomically, C18 : 1 was observed to be the predominant cellular fatty acid and ubiquinone 10 (Q10) was the predominant respiratory quinone. The G+C content of the genomic DNA was determined to be 66 mol%. On the basis of the genotypic, phenotypic and chemotaxonomic characteristics, strain DC-196T was assigned to the genus Shinella, although with distinctive features. At the time of writing, 16S rRNA gene sequence similarities of 97.6–96.8 % and the low DNA–DNA hybridization values of 38.2–32.2 % with the type strains of the three recognized Shinella species confirmed that strain DC-196T represents a novel species of the genus, for which the name Shinella fusca sp. nov. is proposed (type strain DC-196T=CCUG 55808T=LMG 24714T).

2010 ◽  
Vol 60 (2) ◽  
pp. 344-348 ◽  
Author(s):  
Mika Miyashita ◽  
Shuki Fujimura ◽  
Yasuyoshi Nakagawa ◽  
Makoto Nishizawa ◽  
Noboru Tomizuka ◽  
...  

A rod-shaped Gram-staining-negative, non-motile, aerobic and fucoidan-digesting strain, designated TC2T, was isolated from marine algae collected from the coast of the Sea of Okhotsk at Abashiri, Hokkaido, Japan. The bacterium formed yellow, translucent, circular and convex colonies. Comparative 16S rRNA gene sequence analysis indicated that the strain belonged to the genus Flavobacterium, with the highest sequence similarities of 97.1 to 97.3 % to the type strains of Flavobacterium frigidarium, Flavobacterium frigoris, Flavobacterium limicola and Flavobacterium psychrolimnae. DNA–DNA relatedness values between strain TC2T and the above-mentioned species were lower than 28 %. The genomic DNA G+C content was 33.9 mol%. The major respiratory quinone was menaquinone-6 and the predominant fatty acids were iso-C15 : 1 G, iso-C15 : 0, iso-C15 : 0 3-OH and summed feature 3 (which comprises iso-C15 : 0 2-OH and/or C16 : 1 ω7c). Strain TC2T could be differentiated from related species by several phenotypic characteristics. Thus, on the basis of these results, strain TC2T represents a novel species of the genus Flavobacterium, for which the name Flavobacterium algicola sp. nov. is proposed. The type strain is TC2T (=NBRC 102673T =CIP 109574T).


2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 495-499 ◽  
Author(s):  
Jun Zhang ◽  
Shu-An Chen ◽  
Jin-Wei Zheng ◽  
Shu Cai ◽  
Bao-Jian Hang ◽  
...  

A novel facultatively anaerobic, non-spore-forming, non-motile, catalase- and oxidase-positive, Gram-negative and rod-shaped bacterial strain, designated Y12T, was isolated from activated sludge of a wastewater bio-treatment facility. The strain was able to degrade about 90 % of added propanil (100 mg l−1) within 3 days of incubation. Growth occurred in the presence of 0–4.5 % (w/v) NaCl (optimum 0.5 %), at 10–40 °C (optimum 28 °C) and at pH 5.5–10.0 (optimum pH 7.0). Vesicular internal membrane structures and photoheterotrophic growth were not observed. The major respiratory quinone was ubiquinone-10 and the major cellular fatty acid was summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c). The genomic DNA G+C content of strain Y12T was 63.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparison revealed that strain Y12T was a member of the genus Catellibacterium, as it showed highest sequence similarities to Catellibacterium caeni DCA-1T (99.1 %) and <96.0 % similarities with other species of the genus Catellibacterium. Strain Y12T showed low DNA–DNA relatedness values with C. caeni DCA-1T. Based on phenotypic, genotypic and phylogenetic properties, strain Y12T represents a novel species of the genus Catellibacterium, for which the name Catellibacterium nanjingense sp. nov. is proposed. The type strain is Y12T ( = CCTCC AB 2010218T  = KCTC 23298T). An emended description of the genus Catellibacterium is also presented.


2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2310-2314 ◽  
Author(s):  
Juan Du ◽  
Qiliang Lai ◽  
Yang Liu ◽  
Chunming Dong ◽  
Yanrong Xie ◽  
...  

A Gram-reaction-negative, facultatively anaerobic and rod-shaped bacterium, designated strain JN14CK-3T, was isolated from surface sediment of the Jiulong River of China and was characterized phenotypically and phylogenetically. Phylogenetic analysis of the 16S rRNA gene sequences indicated that strain JN14CK-3T belonged to the genus Draconibacterium, with the highest sequence similarity (98.3 %) to Draconibacterium orientale FH5T. By contrast, strain JN14CK-3T shared low 16S rRNA gene sequence similarities ( < 91.0 %) with other type strains. The sole respiratory quinone was MK-7.The polar lipids were phosphatidylethanolamine and several unidentified phospholipids and lipids. The major fatty acids were iso-C15:0, iso-C16:0, anteiso-C15:0, C17:0 2-OH, iso-C16:0 3-OH and iso-C17:0 3-OH. The G+C content of the genomic DNA was 40.9 mol%. The digital DNA–DNA hybridization value and average nucleotide identity (ANI) between strain JN14CK-3T and D. orientale FH5T were 34.2 ± 2.5 % and 87.1 %, respectively. The combined genotypic and phenotypic data showed that strain JN14CK-3T represents a novel species of the genus Draconibacterium, for which the name Draconibacterium sediminis sp. nov. is proposed, with the type strain JN14CK-3T ( = MCCC 1A00734T = KCTC 42152T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4601-4607 ◽  
Author(s):  
Shih-Yao Lin ◽  
Asif Hameed ◽  
You-Cheng Liu ◽  
Yi-Han Hsu ◽  
Wei-An Lai ◽  
...  

An aerobic, Gram-stain-negative, rod or spiral-shaped diazotrophic bacterium (designated strain CC-LY788T), was isolated from agricultural soil in Taiwan. Strain CC-LY788T was able to grow at 25–40 °C, pH 6.0–8.0 and tolerated NaCl to 2.0% (w/v). Positive for nitrogen fixation with the activity recorded as 6.5 nmol ethylene h− 1. Strain CC-LY788T showed highest 16S rRNA gene sequence similarity to Azospirillum picis DSM 19922T (97.2%) and Azospirillum rugosum DSM 19657T (97.1%) and lower sequence similarities ( < 96.6%) to all other species of the genus Azospirillum. According to the DNA–DNA hybridization, the relatedness values of strain CC-LY788T with A. picis DSM 19922T and A. rugosum DSM 19657T were 51.1 ± 5.5% and 46.8 ± 2.1%, respectively. Strain CC-LY788T was positive for the rapid identification of the genus-specific primer set. The respiratory quinone system was ubiquinone (Q-10) and the DNA G+C content was 69.8 mol%. The major fatty acids found in strain CC-LY788T were C16 : 0, C18 : 1 2-OH, C14 : 0 3-OH/C16 : 1 iso I (summed feature 2), C16 : 1ω7c/C16 : 1ω6c (summed feature 3), C18 : 0 ante/C18 : 2ω6,9c (summed feature 5) and C18 : 1ω7c/C18 : 1ω6c (summed feature 8). Based on the phylogenetic, phenotypic and chemotaxonomic features, strain CC-LY788T represents a novel species of the genus Azospirillum, for which the name Azospirillum soli sp. nov. is proposed. The type strain is CC-LY788T ( = BCRC 80569T = JCM 18820T).


2006 ◽  
Vol 56 (11) ◽  
pp. 2693-2695 ◽  
Author(s):  
Xing-Yu Liu ◽  
Bao-Jun Wang ◽  
Cheng-Ying Jiang ◽  
Shuang-Jiang Liu

Bacterial strain LW36T was isolated from activated sludge of a wastewater-treatment bioreactor. Cells of strain LW36T were Gram-negative coccoids to short rods, 1.0–1.2×0.5 μm in size. Colonies were cream-coloured, smooth and circular. Strain LW36T was hetero-organotrophic and chemolithotrophic and was able to use reduced sulfur as an energy resource. Growth was observed at 25–36 °C and pH 5–10. The most abundant cellular fatty acid of strain LW36T was C18 : 1 ω7c (64.2 %). The sole respiratory quinone was ubiquinone-10. The G+C content of the genomic DNA was 61.3 mol% (T m). 16S rRNA gene sequence analysis indicated that strain LW36T was phylogenetically related to members of the genus Paracoccus, with similarities ranging from 92.4 to 94.9 %. Based on these results, it is concluded that strain LW36T represents a novel species of the genus Paracoccus, for which the name Paracoccus sulfuroxidans is proposed. The type strain is strain LW36T (=CGMCC 1.5364T=JCM 14013T).


2012 ◽  
Vol 62 (Pt_9) ◽  
pp. 2133-2139 ◽  
Author(s):  
S. Shivaji ◽  
P. Vishnu Vardhan Reddy ◽  
S. S. S. Nageshwara Rao ◽  
Zareena Begum ◽  
Poorna Manasa ◽  
...  

A novel Gram-stain-negative, horseshoe-shaped, non-motile bacterium, designated strain M12-11BT, was isolated from a marine sediment sample collected at a depth of 200 m from Kongsfjorden, Svalbard. The colony colour was orangish red due to the presence of carotenoids. Fatty acids were dominated by branched and unsaturated fatty acids (90.8 %), with a high abundance of iso-C15 : 0 (14.9 %), anteiso-C15 : 0 (11.4 %), iso-C15 : 1 G (13.1 %), C15 : 1ω6c (5.4 %), C17 : 1ω6c (6.7 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 9.3 %) and summed feature 9 (10-methyl C16 : 0 and/or iso-C17 : 1ω9c; 5.9 %). Strain M12-11BT contained MK-7 as the major respiratory quinone. The polar lipids consisted of phosphatidylcholine, phosphatidylethanolamine, one unidentified aminolipid and three unidentified lipids. Based on 16S rRNA gene sequence similarities, the type strains of Cyclobacterium amurskyense , Cyclobacterium marinum and Cyclobacterium lianum were most closely related to M12-11BT with sequence similarities of 98.2, 96.8 and 93.3 %, respectively. Other members of the family Cyclobacteriaceae had sequence similarities of <92.0 %. However, DNA–DNA hybridization with Cyclobacterium amurskyense KCTC 12363T and Cyclobacterium marinum DSM 745T showed relatedness values of only 24.5 and 32.5 % with respect to strain M12-11BT. Based on the results of DNA–DNA hybridization experiments and phenotypic and chemotaxonomic data, it appears that strain M12-11BT represents a novel species of the genus Cyclobacterium , for which the name Cyclobacterium qasimii sp. nov. is proposed; the type strain is M12-11BT ( = KCTC 23011T = NBRC 106168T) and it has a DNA G+C content of 40.5 mol%.


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 2852-2858 ◽  
Author(s):  
Esther Menéndez ◽  
Martha H. Ramírez-Bahena ◽  
Anna Fabryová ◽  
José M. Igual ◽  
Oldrich Benada ◽  
...  

We isolated a strain coded Esc2AmT during a study focused on the microbial diversity of adult specimens of the bark beetle Hylesinus fraxini. Its 16S rRNA gene sequence had 99.4 % similarity with respect to its closest relative, Pseudomonas rhizosphaerae IH5T. The analysis of partial sequences of the housekeeping genes rpoB, rpoD and gyrB confirmed that strain Esc2AmT formed a cluster with P. rhizosphaerae IH5T clearly separated from the remaining species of the genus Pseudomonas. Strain Esc2AmT had polar flagella and could grow at temperatures from 4 °C to 30 °C. The respiratory quinone was Q9 and the main fatty acids were C16 : 0, C18 : 1ω7c and/or C18 : 1ω6c in summed feature 8 and C16 : 1ω7c and/or C16 : 1ω6c in summed feature 3. DNA–DNA hybridization results showed 51 % relatedness with respect to P. rhizosphaerae IH5T. Oxidase, catalase and urease-positive, the arginine dihydrolase system was present but nitrate reduction and β-galactosidase production were negative. Aesculin hydrolysis was positive. Based on the results from the genotypic, phenotypic and chemotaxonomic analyses, we propose the classification of strain Esc2AmT as representing a novel species of the genus Pseudomonas, for which we propose the name Pseudomonas coleopterorum sp. nov. The type strain is Esc2AmT ( = LMG 28558T = CECT 8695T).


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 2831-2837 ◽  
Author(s):  
Peter Kämpfer ◽  
Karin Martin ◽  
John A. McInroy ◽  
Stefanie P. Glaeser

A Gram-stain-negative, rod-shaped, non-spore-forming bacterium (strain JM-1396T) producing a yellow pigment, was isolated from the healthy internal stem tissue of post-harvest cotton (Gossypium hirsutum, cultivar ‘DES-119’) grown at the Plant Breeding Unit at the E. V. Smith Research Center in Tallassee (Macon county), AL, USA. 16S rRNA gene sequence analysis of strain JM-1396T showed high sequence similarity values to the type strains of Novosphingobium mathurense, Novosphingobium panipatense (both 98.6 %) and Novosphingobium barchaimii (98.5 %); sequence similarities to all other type strains of species of the genus Novosphingobium were below 98.3 %. DNA–DNA pairing experiments of the DNA of strain JM-1396T and N. mathurense SM117T, N. panipatense SM16T and N. barchaimii DSM 25411T showed low relatedness values of 8 % (reciprocal 7 %), 24 % (reciprocal 26 %) and 19 % (reciprocal 25 %), respectively. Ubiquinone Q-10 was detected as the dominant quinone; the fatty acids C18 : 1ω7c (71.0 %) and the typical 2-hydroxy fatty acid, C14 : 0 2-OH (11.7 %), were detected as typical components. The polar lipid profile contained the diagnostic lipids diphosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid and phosphatidylcholine. The polyamine pattern contained the major compound spermidine and only minor amounts of other polyamines. All these data revealed that strain JM-1396T represents a novel species of the genus Novosphingobium. For this reason we propose the name Novosphingobium gossypii sp. nov. with the type strain JM-1396T ( = LMG 28605T = CCM 8569T = CIP 110884T).


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 3131-3136 ◽  
Author(s):  
Hina Singh ◽  
Juan Du ◽  
Kyung-Hwa Won ◽  
Jung-Eun Yang ◽  
Shahina Akter ◽  
...  

A novel bacterial strain, designated THG-PC7T, was isolated from fallow farmland soil in Yongin, South Korea. Cells of strain THG-PC7T were Gram-stain-negative, dark yellow, aerobic, rod-shaped and had gliding motility. Strain THG-PC7T grew optimally at 25–35 °C, at pH 7 and in the absence of NaCl. Comparative 16S rRNA gene sequence analysis identified strain THG-PC7T as belonging to the genus Lysobacter, exhibiting highest sequence similarity with Lysobacter ximonensis KCTC 22336T (98.7 %) followed by Lysobacter niastensis KACC 11588T (95.7 %). In DNA–DNA hybridization tests, DNA relatedness between strain THG-PC7T and its closest phylogenetic neighbour L. ximonensis was below 25 %. The DNA G+C content of the novel isolate was determined to be 62.5 mol%. Flexirubin-type pigments were found to be present. The major cellular fatty acids were determined to be iso-C15 : 0, iso-C16 : 0, anteiso-C15 : 0 and iso-C17 : 1ω9c. The major respiratory quinone was identified as ubiquonone-8 (Q8). The predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminophospolipid. On the basis of results from DNA–DNA hybridization and the polyphasic data, strain THG-PC7T represents a novel species of the genus Lysobacter, for which the name Lysobacter novalis sp. nov. is proposed. The type strain is THG-PC7T( = KACC 18276T = CCTCC AB 2014319T).


2020 ◽  
Vol 70 (3) ◽  
pp. 1868-1875 ◽  
Author(s):  
Shan-Hui Li ◽  
Jaeho Song ◽  
Yeonjung Lim ◽  
Yochan Joung ◽  
Ilnam Kang ◽  
...  

A Gram-stain-negative, rod-shaped, aerobic, non-flagellated, chemoheterotrophic bacterium, designated IMCC14385T, was isolated from surface seawater of the East Sea, Republic of Korea. The 16S rRNA gene sequence analysis indicated that IMCC14385T represented a member of the genus Halioglobus sharing 94.6–97.8 % similarities with species of the genus. Whole-genome sequencing of IMCC14385T revealed a genome size of 4.3 Mbp and DNA G+C content of 56.7 mol%. The genome of IMCC14385T shared an average nucleotide identity of 76.6 % and digital DNA–DNA hybridization value of 21.6 % with the genome of Halioglobus japonicus KCTC 23429T. The genome encoded the complete poly-β-hydroxybutyrate biosynthesis pathway. The strain contained summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and C17 : 1 ω8c as the predominant cellular fatty acids as well as ubiquinone-8 (Q-8) as the respiratory quinone. The polar lipids detected in the strain were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, five unidentified phospholipids, an unidentified aminolipid, an unidentified aminophospholipid and four unidentified lipids. On the basis of taxonomic data obtained in this study, it is suggested that IMCC14385T represents a novel species of the genus Halioglobus , for which the name Halioglobus maricola sp. nov. is proposed. The type strain is IMCC14385T (=KCTC 72520T=NBRC 114072T).


Sign in / Sign up

Export Citation Format

Share Document