scholarly journals Rhodococcus jialingiae sp. nov., an actinobacterium isolated from sludge of a carbendazim wastewater treatment facility

2010 ◽  
Vol 60 (2) ◽  
pp. 378-381 ◽  
Author(s):  
Zhichun Wang ◽  
Jingliang Xu ◽  
Yan Li ◽  
Kun Wang ◽  
Yangyang Wang ◽  
...  

A novel carbendazim-degrading actinobacterium, designated djl-6-2T, was isolated from the sludge of a carbendazim wastewater treatment facility in Jiangsu province, China. The morphological and chemotaxonomic properties of the isolate were typical of members of the genus Rhodococcus. Strain djl-6-2T formed a coherent cluster with Rhodococcus qingshengii djl-6T, Rhodococcus baikonurensis DSM 44587T, Rhodococcus erythropolis DSM 43066T and Rhodococcus globerulus DSM 43954T in 16S rRNA gene sequence analysis. The results of DNA–DNA hybridization with the above strains (27.7, 19.3, 18.6 and 10.6 % relatedness, respectively), in combination with differences in biochemical and physiological properties, suggest that strain djl-6-2T should be classified within a novel species of the genus Rhodococcus, for which the name Rhodococcus jialingiae sp. nov. is proposed, with djl-6-2T (=DSM 45257T =CCTCC AB 208292T) as the type strain.

2019 ◽  
Vol 69 (4) ◽  
pp. 1016-1023 ◽  
Author(s):  
Xiang-yue Zhou ◽  
Zeng-hong Gao ◽  
Mei-hong Chen ◽  
Mei-qi Jian ◽  
Li-hong Qiu

Cells of bacterial strains 4 G-K06T and 4MSK11T, isolated from soil samples collected from monsoon evergreen broad-leaved forest of the Dinghushan Mountain (112° 31′ E 23° 10′ N), Guangdong Province, PR China, were Gram-stain-negative, aerobic, non-spore-forming, non-motile and rod-shaped. Strain 4 G-K06T grew at 10–37 °C, pH 3.5–7.5 and 0–3.5 % (w/v) NaCl; while 4MSK11T grew at 4–42 °C, pH 3.5–7.5 and 0–2.5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed strain 4 G-K06T formed a clade with Dyella flagellata 4 M-K16T, Dyella acidisoli 4M-Z03T, Dyella humi DHG40T and Dyella nitratireducens DHG59T, while strain 4MSK11T formed a clade with Dyella caseinilytica DHOB09T and Dyella mobilis DHON07T, both within the genus Dyella . The result of the partial atpD, gyrB and lepA gene sequence analysis supported the conclusion based on 16S rRNA gene sequence analysis, which showed that these two strains represent two novel species of Dyella . The average nucleotide identity and digital DNA–DNA hybridization value for the whole genomes were 75.0–79.0 and 20.3–22.6 % between strains 4 G-K06T, 4MSK11T and those described Dyella species with genome sequences; while the DNA–DNA hybridization rates between strains 4 G-K06T, 4MSK11T and closely related Dyella species (without genome sequence) were 29.5–41.8 %. The major cellular fatty acids of these two strains were iso-C15 : 0, iso-C16 : 0 and iso-C17 : 1 ω9c, while the major polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several unidentified phospholipids and aminophospholipids. The only ubiquinone of these two strains was ubiquinone-8. The DNA G+C contents of 4 G-K06T and 4MSK11T were 60.4 and 61.3 mol%, respectively. On the basis of the evidence presented here, strains 4 G-K06T and 4MSK11T represent two novel species of the genus Dyella , for which the names Dyella monticola sp. nov. (type strain 4 G-K06T=LMG 30268T=GDMCC 1.1188T) and Dyella psychrodurans sp. nov. (type strain 4MSK11T=KCTC 62280T=GDMCC 1.1185T) are proposed.


2020 ◽  
Vol 70 (3) ◽  
pp. 1868-1875 ◽  
Author(s):  
Shan-Hui Li ◽  
Jaeho Song ◽  
Yeonjung Lim ◽  
Yochan Joung ◽  
Ilnam Kang ◽  
...  

A Gram-stain-negative, rod-shaped, aerobic, non-flagellated, chemoheterotrophic bacterium, designated IMCC14385T, was isolated from surface seawater of the East Sea, Republic of Korea. The 16S rRNA gene sequence analysis indicated that IMCC14385T represented a member of the genus Halioglobus sharing 94.6–97.8 % similarities with species of the genus. Whole-genome sequencing of IMCC14385T revealed a genome size of 4.3 Mbp and DNA G+C content of 56.7 mol%. The genome of IMCC14385T shared an average nucleotide identity of 76.6 % and digital DNA–DNA hybridization value of 21.6 % with the genome of Halioglobus japonicus KCTC 23429T. The genome encoded the complete poly-β-hydroxybutyrate biosynthesis pathway. The strain contained summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and C17 : 1 ω8c as the predominant cellular fatty acids as well as ubiquinone-8 (Q-8) as the respiratory quinone. The polar lipids detected in the strain were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, five unidentified phospholipids, an unidentified aminolipid, an unidentified aminophospholipid and four unidentified lipids. On the basis of taxonomic data obtained in this study, it is suggested that IMCC14385T represents a novel species of the genus Halioglobus , for which the name Halioglobus maricola sp. nov. is proposed. The type strain is IMCC14385T (=KCTC 72520T=NBRC 114072T).


2011 ◽  
Vol 61 (8) ◽  
pp. 1811-1816 ◽  
Author(s):  
V. Venkata Ramana ◽  
Shivali Kapoor ◽  
E. Shobha ◽  
E. V. V. Ramprasad ◽  
Ch. Sasikala ◽  
...  

A novel Gram-negative, motile, bacteriochlorophyll b-containing purple non-sulfur bacterium, strain JA248T, was isolated from phototrophic enrichments of a yellow–green epilithic biofilm sample collected from Gulmarg, India. The genomic DNA G+C content of strain JA248T was 63.8 mol%. A phylogenetic tree based on 16S rRNA gene sequence analysis showed that strain JA248T had highest similarity to members of the genus Blastochloris and was closely related to Blastochloris sulfoviridis DSM 729T (98.5 % sequence similarity) and Blastochloris viridis DSM 133T (98.4 %) of the class Alphaproteobacteria. Strain JA248T was characterized based on polyphasic taxonomy, and distinct phenotypic and molecular differences based on DNA–DNA hybridization (relatedness of <46.5 % with the two species of the genus Blastochloris), multilocus sequence analysis, and phenotypic and chemotaxonomic evidence separated strain JA248T from other species of the genus Blastochloris. Strain JA248T therefore represents a novel species in the genus Blastochloris, for which the name Blastochloris gulmargensis sp. nov. is proposed. The type strain is JA248T ( = JCM 14795T  = DSM 19786T).


2011 ◽  
Vol 61 (12) ◽  
pp. 2922-2927 ◽  
Author(s):  
Rajaa Chahboune ◽  
Lorena Carro ◽  
Alvaro Peix ◽  
Said Barrijal ◽  
Encarna Velázquez ◽  
...  

Several strains isolated from Cytisus villosus nodules have been characterized based on their diverse genetic, phenotypic and symbiotic characteristics. According to 16S rRNA gene sequence analysis, the isolates formed a group that was closely related to Bradyrhizobium canariense BTA-1T with 99.4 % similarity. Analysis of three housekeeping genes, recA, atpD and glnII, suggested that the C. villosus strains represent a novel Bradyrhizobium species most closely related to B. canariense BTA-1T with similarities of 94.2, 96.7 and 94.5 %, respectively. All these differences were congruent with DNA–DNA hybridization analysis, which revealed 31 % relatedness between a representative strain (CTAW11T) isolated from C. villosus nodules and B. canariense BTA-1T. Phenotypic differences among the strains isolated from C. villosus and B. canariense were based on assimilation of carbon and nitrogen sources. The nodC and nifH genes of strain CTAW11T were phylogenetically related to those of strains belonging to bv. genistearum and divergent from those of bv. glycinearum and, accordingly, they do not nodulate soybean. Based on the genotypic and phenotypic data obtained in this study, our strains should be classified as representatives of a novel species for which the name Bradyrhizobium cytisi sp. nov. is proposed; the type strain is CTAW11T ( = LMG 25866T = CECT 7749T).


2004 ◽  
Vol 54 (1) ◽  
pp. 235-239 ◽  
Author(s):  
Joachim Wink ◽  
Julia Gandhi ◽  
Reiner M. Kroppenstedt ◽  
Gerhard Seibert ◽  
Bettina Sträubler ◽  
...  

Strain DSM 44594T, which produces the glycopeptide antibiotic decaplanin, is a member of the genus Amycolatopsis based on 16S rRNA gene sequence analysis and chemotaxonomic properties. It is the first member of this genus that is reported to form pseudosporangia, which resemble those of members of the genus Kibdelosporangium. Phylogenetically, the novel taxon is related to Amycolatopsis orientalis, Amycolatopsis lurida, Amycolatopsis azurea, Amycolatopsis japonica and Amycolatopsis keratiniphila. Morphological, cultural and physiological properties, the production of a unique glycolipid and DNA–DNA similarity of <55 % with phylogenetically related strains reveal that strain DSM 44594T represents a novel species of the genus, for which the name Amycolatopsis decaplanina sp. nov. (type strain, FH 1845T=DSM 44594T=NRRL B-24209T) is proposed.


2010 ◽  
Vol 60 (1) ◽  
pp. 187-190 ◽  
Author(s):  
Maki Kitahara ◽  
Mitsuo Sakamoto ◽  
Yoshimi Benno

The taxonomic position of strain JCM 2765T isolated from fermented cane molasses in Thailand was reinvestigated. Strain JCM 2765T was originally identified as representing Lactobacillus buchneri on the basis of biochemical and physiological characteristics. In the present study, 16S rRNA gene sequence analysis of strain JCM 2765T demonstrated a low level of similarity with the type strain of L. buchneri (92.5 %) and high levels with those of Lactobacillus collinoides (97.6 %) and Lactobacillus paracollinoides (98.0 %). Ribotyping was applied to investigate the relationships between strain JCM 2765T, L. collinoides and L. paracollinoides. The dendrogram based on ribotyping patterns showed one cluster for six strains of L. paracollinoides, and that strain JCM 2765T and L. collinoides JCM 1123T were each independent. Based on additional phenotypic findings and DNA–DNA hybridization results, strain JCM 2765T is considered to represent a novel species of the genus Lactobacillus, for which the name Lactobacillus similis sp. nov. is proposed. The type strain is JCM 2765T (=LMG 23904T).


2011 ◽  
Vol 61 (4) ◽  
pp. 926-931 ◽  
Author(s):  
Patrícia L. Ramos ◽  
Stefanie Van Trappen ◽  
Fabiano L. Thompson ◽  
Rafael C. S. Rocha ◽  
Heloiza R. Barbosa ◽  
...  

A Gram-negative, rod-shaped, non-spore-forming and nitrogen-fixing bacterium, designated ICB 89T, was isolated from stems of a Brazilian sugar cane variety widely used in organic farming. 16S rRNA gene sequence analysis revealed that strain ICB 89T belonged to the genus Stenotrophomonas and was most closely related to Stenotrophomonas maltophilia LMG 958T, Stenotrophomonas rhizophila LMG 22075T, Stenotrophomonas nitritireducens L2T, [Pseudomonas] geniculata ATCC 19374T, [Pseudomonas] hibiscicola ATCC 19867T and [Pseudomonas] beteli ATCC 19861T. DNA–DNA hybridization together with chemotaxonomic data and biochemical characteristics allowed the differentiation of strain ICB 89T from its nearest phylogenetic neighbours. Therefore, strain ICB 89T represents a novel species, for which the name Stenotrophomonas pavanii sp. nov. is proposed. The type strain is ICB 89T ( = CBMAI 564T  = LMG 25348T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3552-3557 ◽  
Author(s):  
Sang Rim Kang ◽  
Sathiyaraj Srinivasan ◽  
Sang-Seob Lee

A Gram-staining-negative, halophilic, facultatively anaerobic, motile, rod-shaped and nitrogen-fixing bacterium, designated strain S37T, was isolated from an artificial oil-spill sediment sample from the coast of Taean, South Korea. Cells grew at 10–37 °C and pH 5.0–9.0, with optimal growth at 28 °C and pH 6.0–8.0. Growth was observed with 1–9 % (w/v) NaCl in marine broth, with optimal growth with 3–5 % NaCl, but no growth was observed in the absence of NaCl. According to the results of 16S rRNA gene sequence analysis, strain S37T represents a member of the genus Vibrio of the class Gammaproteobacteria and forms a clade with Vibrio plantisponsor MSSRF60T (97.38 %), Vibrio diazotrophicus ATCC 33466T (97.31 %), Vibrio aestuarianus ATCC 35048T (97.07 %) Vibrio areninigrae J74T (96.76 %) and Vibrio hispanicus LMG 13240T (96.76 %). The major fatty acids were C16 : 0, C16 : 1ω7c/C16 : 1ω6c and C18 : 1ω7c/C18 : 1ω6c. The DNA G+C content was 41.9 %. The DNA–DNA hybridization analysis results showed a 30.2 % association value with the closely related type strain V. plantisponsor DSM 21026T. On the basis of phenotypic and chemotaxonomic characteristics, strain S37T represents a novel species of the genus Vibrio, for which the name Vibrio oceanisediminis sp. nov., is proposed with the type strain S37T ( = KEMB 2255-005T = JCM 30409T).


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 3196-3202 ◽  
Author(s):  
Van-An Hoang ◽  
Yeon-Ju Kim ◽  
Ngoc Lan Nguyen ◽  
Chang Ho Kang ◽  
Jong-Pyo Kang ◽  
...  

A novel Gram-staining-positive, rod-shaped bacterium, designated DCY100T, was isolated from rhizome of mountain ginseng root in Hwacheon mountain, Gangwon province, Republic of Korea. The 16S rRNA gene sequence analysis showed that strain DCY100T belonged to the genus Microbacterium and was most closely related to Microbacterium ginsengisoli KCTC 19189T (97.9 %), Microbacterium lacus JCM 15575T (97.2 %) and Microbacterium invictum DSM 19600T (97.1 %). The major menaquinones were MK-11 and MK-12. The major polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol and one unidentified glycolipid. The major fatty acids (>10.0 %) were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The cell-wall peptidoglycan contained the amino acids ornithine, alanine, glutamic acid and glycine; whole-cell sugars consisted of glucose, galactose, rhamnose and ribose. The DNA G+C content was 63.6 ± 0.7 mol%. The DNA–DNA hybridization relatedness values between strain DCY100T and Microbacterium ginsengisoli KCTC 19189T, Microbacterium lacus JCM 15575T and Microbacterium invictum DSM 19600T were 36.2 ± 0.4, 22.0 ± 3.0 and 15.3 ± 1.8 %, respectively. On the basis of phenotypic, chemotaxonomic and genotypic analyses, the isolate is classified as a representative of a novel species in the genus Microbacterium, for which the name Microbacterium rhizomatis DCY100T is proposed. The type strain is DCY100T ( = KCTC 39529T = JCM 30598T).


2004 ◽  
Vol 54 (5) ◽  
pp. 1521-1526 ◽  
Author(s):  
Ma Jesús Montes ◽  
Elena Mercadé ◽  
Núria Bozal ◽  
Jesús Guinea

An endospore-forming strain, 20CMT, was isolated from Antarctic sediment and identified as a member of the genus Paenibacillus on the basis of phenotypic and phylogenetic analyses. The organism stained Gram-variable and was facultatively anaerobic. Strain 20CMT was psychrotolerant, growing optimally at 10–15 °C. Like other Paenibacillus species, it contained anteiso-C15 : 0 as the major cellular fatty acid. The DNA G+C content was 40·7 mol%. 16S rRNA gene sequence analysis placed strain 20CMT within the Paenibacillus cluster, with a similarity value of 99·5 % to Paenibacillus macquariensis DSM 2T. DNA–DNA hybridization experiments between the Antarctic isolate and P. macquariensis DSM 2T revealed a reassociation value of 47 %, indicating that strain 20CMT and P. macquariensis DSM 2T belong to different species. Based on evaluation of morphological, physiological, chemotaxonomic and phylogenetic analyses, a novel species, Paenibacillus antarcticus sp. nov., is proposed; the type strain is 20CMT (=LMG 22078T=CECT 5836T).


Sign in / Sign up

Export Citation Format

Share Document