scholarly journals Agromyces soli sp. nov., isolated from farm soil

2011 ◽  
Vol 61 (6) ◽  
pp. 1286-1292 ◽  
Author(s):  
Myungjin Lee ◽  
Leonid N. Ten ◽  
Sung-Geun Woo ◽  
Joonhong Park

A Gram-positive, aerobic to microaerophilic, non-motile bacterial strain, designated MJ21T, was isolated from farm soil and was characterized to determine its taxonomic position by using a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, strain MJ21T was placed within the genus Agromyces, and exhibited relatively high levels of similarity to Agromyces ulmi XIL01T (97.8 %), Agromyces aurantiacus YIM 21741T (97.1 %), Agromyces mediolanus JCM 3346T (96.7 %), A. mediolanus JCM 1376 (99.1 %), A. mediolanus JCM 9632 (99.1 %), A. mediolanus JCM 9633 (98.9 %) and A. mediolanus JCM 9631 (96.5 %). Chemotaxonomic data also supported the classification of strain MJ21T within the genus Agromyces. The new isolate contained MK-12 as the predominant menaquinone and rhamnose, galactose and xylose as cell-wall sugars. The major cellular fatty acids (>10 % of the total) were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. Cell-wall amino acids were 2,4-diaminobutyric acid, glutamic acid, glycine and alanine. Diphosphatidylglycerol, phosphatidylglycerol, two unknown glycolipids and one unidentified phospholipid were detected as polar lipids. The DNA G+C content of strain MJ21T was 73.4 mol%. However, levels of DNA–DNA relatedness between strain MJ21T and the seven phylogenetically closest Agromyces strains ranged from 14 to 56 %, showing clearly that the new isolate represents a novel genomic species. Strain MJ21T could be differentiated clearly from its phylogenetic neighbours on the basis of phenotypic, genotypic and chemotaxonomic features. Therefore, strain MJ21T is considered to represent a novel species of the genus Agromyces, for which the name Agromyces soli sp. nov. is proposed. The type strain is MJ21T ( = KCTC 19549T  = JCM 16247T).

2010 ◽  
Vol 60 (8) ◽  
pp. 1721-1724 ◽  
Author(s):  
Jong-Sik Jin ◽  
Maki Kitahara ◽  
Mitsuo Sakamoto ◽  
Masao Hattori ◽  
Yoshimi Benno

An equol-producing bacterium, strain DZET, which was isolated from human faeces, was characterized by morphological, biochemical and molecular methods. The isolate was Gram-positive, obligately anaerobic, non-spore-forming, asaccharolytic and rod-shaped. 16S rRNA gene sequence analysis showed 92.8, 91.0, 91.1 and 90.6 % similarities with Slackia faecicanis, Slackia exigua, Slackia heliotrinireducens and Slackia isoflavoniconvertens, respectively. Based on these data, we propose a novel species of the genus Slackia, Slackia equolifaciens sp. nov. The major cellular fatty acids are C14 : 0, C18 : 1 ω9c and C18 : 1 ω9c DMA (dimethyl acetal). The DNA G+C content of the strain is 60.8 mol%. The type strain of S. equolifaciens sp. nov. is DZET (=JCM 16059T =CCUG 58231T).


2004 ◽  
Vol 54 (6) ◽  
pp. 2151-2154 ◽  
Author(s):  
Hana Yi ◽  
Jongsik Chun

A strictly aerobic, non-motile, rod-shaped actinomycete, designated strain JC2056T, was isolated from a sediment sample of getbol, the tidal flat of Korea. Results of 16S rRNA gene sequence analysis indicated that the isolate belonged to the genus Nocardioides, with the highest similarity being to Nocardioides luteus KCTC 9575T (95·7 %). The major menaquinone was MK-8(H4), and predominant cellular fatty acids were iso-16 : 0 and iso-16 : 1 H. The DNA G+C content was 70 mol%. Based on the morphological, physiological, biochemical and chemotaxonomical data presented in this study, strain JC2056T should be classified as a novel species, for which the name Nocardioides aestuarii sp. nov. is proposed; the type strain is JC2056T (=IMSNU 14029T=KCTC 9921T=JCM 12125T).


2010 ◽  
Vol 60 (8) ◽  
pp. 1844-1848 ◽  
Author(s):  
Teresa Lucena ◽  
Javier Pascual ◽  
Esperanza Garay ◽  
David R. Arahal ◽  
M. Carmen Macián ◽  
...  

Strain 7SM29T, an aerobic marine gammaproteobacterium isolated from seawater from Castellón, Spain, was characterized by classical phenotyping, chemotaxonomy and 16S rRNA gene sequence analysis. Strain 7SM29T was found to be closely related to strains in the genus Haliea and to Congregibacter litoralis KT71T, with which a genus-level cluster was formed within the NOR5/OM60 clade of the Gammaproteobacteria. Strain 7SM29T was a short, motile rod with a tuft of three polar flagella. The strain grew on marine agar and formed pale-yellow colonies. Strain 7SM29T required NaCl for growth, reduced nitrate to nitrite, degraded several polymers and showed a preference for organic acids and amino acids over carbohydrates as carbon and energy sources. Strain 7SM29T contained Q-8 as the sole respiratory quinone. The DNA G+C content was 62.1 mol%. Phosphatidylglycerol, diphosphatidylglycerol and phosphatidylethanolamine were the major polar lipids. The major cellular fatty acids were unsaturated C16–C18 compounds. On the basis of extensive phenotypic and phylogenetic comparative analysis, it is concluded that the strain represents a novel species of the genus Haliea, for which the name Haliea mediterranea sp. nov. is proposed. The type strain is 7SM29T (=CECT 7447T =DSM 21924T).


2006 ◽  
Vol 56 (2) ◽  
pp. 407-411 ◽  
Author(s):  
Martha E. Trujillo ◽  
Reiner M. Kroppenstedt ◽  
Peter Schumann ◽  
Eustoquio Martínez-Molina

Strain LU14T, isolated from the roots of Lupinus angustifolius, was characterized using a polyphasic approach. 16S rRNA gene sequence studies showed a similarity of 98·7 % to the corresponding sequence of Kribbella sandramycini DSM 15626T. Chemotaxonomic data gathered for fatty acids, phospholipids, cell-wall peptidoglycan and menaquinones strongly supported the classification of this strain in the genus Kribbella and DNA–DNA hybridization studies suggested that it may represent a novel species. Many physiological features were found that clearly distinguished isolate LU14T from other Kribbella species. Based on the above data, a novel species of the genus Kribbella, Kribbella lupini sp. nov., is proposed with the type strain LU14T (=DSM 16683T=LMG 22957T).


2011 ◽  
Vol 61 (7) ◽  
pp. 1612-1616 ◽  
Author(s):  
Lingyun Qu ◽  
Qiliang Lai ◽  
Fengling Zhu ◽  
Xuguang Hong ◽  
Jinxing Zhang ◽  
...  

Two novel Gram-negative, oxidase- and catalase-positive, rod-shaped bacterial strains, designated YCSA28T and YCSA39, were isolated from sediment of Daqiao saltern, Jimo, Qingdao, on the east coast of China. The two strains grew optimally at 28–30 °C, at pH 7.5 and in the presence of 7–8 % (w/v) NaCl. They were assigned to the genus Halomonas, class Gammaproteobacteria, based on 16S rRNA gene sequence analysis. The major cellular fatty acids of the two strains were C18 : 1ω7c (42.9 %), C16 : 0 (23.1 %) and C16 : 1ω7c/ω6c (18.0 %), and Q-9 was the major ubiquinone. The G+C content of the DNA of strains YCSA28T and YCSA39 was 63.7 and 63.9 mol%, respectively. The predominant respiratory lipoquinone, cellular fatty acid profiles and DNA G+C content of strains YCSA28T and YCSA39 were consistent with those of recognized species of the genus Halomonas. Levels of DNA–DNA relatedness between strains YCSA28T and YCSA39, between YCSA28T and Halomonas ventosae Al12T, and between YCSA39 and H. ventosae Al12T were 95, 45 and 50 %, respectively. Together, these data indicated that strains YCSA28T and YCSA39 represent a single novel species of the genus Halomonas, for which the name Halomonas daqiaonensis sp. nov. is proposed. The type strain is YCSA28T ( = CGMCC 1.9150T  = NCCB 100305T  = MCCC 1B00920T).


2007 ◽  
Vol 57 (11) ◽  
pp. 2453-2457 ◽  
Author(s):  
S. Kalyan Chakravarthy ◽  
T. N. R. Srinivas ◽  
P. Anil Kumar ◽  
Ch. Sasikala ◽  
Ch. V. Ramana

Two Gram-negative, vibrioid, phototrophic, purple non-sulfur strains, JA131T and JA135T, were isolated from marine habitats. Strain JA131T is non-motile but strain JA135T is motile by means of a pair of monopolar flagella. Both strains have an obligate requirement for NaCl for growth. The intracellular photosynthetic membranes of the two novel strains are of the vesicular type. Bacteriochlorophyll a and probably rhodovibrine are present as photosynthetic pigments. Niacin, thiamine and p-aminobenzoic acid are required as growth factors for both novel strains. Based on 16S rRNA gene sequence analysis, morphological and physiological characteristics, strains JA131T and JA135T are significantly different from each other and from other species of the genus Roseospira and thus represent two novel species for which the names Roseospira visakhapatnamensis sp. nov. and Roseospira goensis sp. nov. are proposed, respectively. The type strain of Roseospira visakhapatnamensis sp. nov. is JA131T (=ATCC BAA-1365T=JCM 14190T) and the type strain of Roseospira goensis sp. nov. is JA135T (=ATCC BAA-1364T=JCM 14191T).


2007 ◽  
Vol 57 (11) ◽  
pp. 2557-2561 ◽  
Author(s):  
Takashi Itoh ◽  
Naoto Yoshikawa ◽  
Tomonori Takashina

A novel thermoacidophilic, cell wall-less archaeon, strain IC-189T, was isolated from a solfataric field in Ohwaku-dani, Hakone, Japan. The cells were irregular cocci, sometimes lobed, club-shaped or catenated, and were highly variable in size, ranging from 0.8 to 8.0 μm in diameter. The strain grew at temperatures in the range 38–68 °C (optimally at 60 °C) and at pH 1.8–4.0 (optimally at around pH 3.0). Strain IC-189T was obligately aerobic and heterotrophic, requiring yeast extract for growth. Yeast extract, glucose and mannose served as carbon and energy sources. The polar lipids consisted mainly of cyclic or acyclic glycerol-bisdiphytanyl-glycerol tetraethers, and the predominant quinone was a menaquinone with seven isoprenoid units (MK-7). The G+C content of total DNA was 56.1 mol%. 16S rRNA gene sequence analysis revealed that strain IC-189T was a member of the order Thermoplasmatales, but diverged from the hitherto known species of the genera Thermoplasma, Picrophilus and Ferroplasma (86.2–91.0 % sequence similarity). These phenotypic and phylogenetic properties clearly support a separate taxonomic status for this strain. Therefore, strain IC-189T represents a novel genus (order Thermoplasmatales) and species, for which the name Thermogymnomonas acidicola gen. nov., sp. nov. is proposed, with type strain IC-189T (=JCM 13583T=DSM 18835T).


2010 ◽  
Vol 60 (1) ◽  
pp. 140-143 ◽  
Author(s):  
Eun-Jin Park ◽  
Seong Woon Roh ◽  
Min-Soo Kim ◽  
Mi-Ja Jung ◽  
Kee-Sun Shin ◽  
...  

A Gram-positive, aerobic, non-motile and coccoid actinobacterium, designated P31T, was isolated from a traditional, fermented seafood. The strain was catalase-positive and oxidase-negative. Cells grew in the presence of 0–15.0 % (w/v) NaCl, and at pH 5–10 and 15–37 °C. Major cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. Strain P31T contained MK-7 as the predominant menaquinone. The DNA G+C content of the genomic DNA of strain P31T was 65.2 mol%. A phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain P31T was most closely related to Kocuria kristinae DSM 20032T, with 96.9 % similarity, and these two strains clustered together in constructed phylogenetic trees. The DNA–DNA hybridization value between strain P31T and K. kristinae DSM 20032T was 21.1 %. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, it is suggested that strain P31T represents a novel species of the genus Kocuria, for which the name Kocuria koreensis sp. nov. is proposed. The type strain is P31T (=KCTC 19595T=JCM 15915T).


2010 ◽  
Vol 60 (11) ◽  
pp. 2577-2582 ◽  
Author(s):  
Myungjin Lee ◽  
Sung-Geun Woo ◽  
Joonhong Park ◽  
Soon-Ae Yoo

A Gram-negative, non-motile, aerobic bacterial strain, designated MJ20T, was isolated from farm soil near Daejeon (South Korea) and was characterized taxonomically by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain MJ20T belongs to the family Cytophagaceae, class Sphingobacteria, and was related most closely to Dyadobacter fermentans DSM 18053T (98.9 % sequence similarity), Dyadobacter beijingensis JCM 14200T (98.0 %) and Dyadobacter ginsengisoli KCTC 12589T (96.4 %). The G+C content of the genomic DNA of strain MJ20T was 48.5 mol%. The detection of MK-7 as the predominant menaquinone and a fatty acid profile with summed feature 4 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH), iso-C15 : 0, C16 : 0 and C16 : 1 ω5c as major components supported the affiliation of strain MJ20T to the genus Dyadobacter. The new isolate exhibited relatively low levels of DNA–DNA relatedness with respect to D. fermentans DSM 18053T (mean±sd of three determinations, 47±7 %) and D. beijingensis JCM 14200T (38±8 %). On the basis of its phenotypic and genotypic properties together with phylogenetic distinctiveness, strain MJ20T (=KCTC 22481T =JCM 16232T) should be classified in the genus Dyadobacter as the type strain of a novel species, for which the name Dyadobacter soli sp. nov. is proposed.


2006 ◽  
Vol 56 (9) ◽  
pp. 2113-2117 ◽  
Author(s):  
Akiko Kageyama ◽  
Yoko Takahashi ◽  
Satoshi Ōmura

Three novel bacterial strains were isolated from a soil sample collected in Japan by culture on a GPM agar plate supplemented with superoxide dismutase and catalase. The strains were Gram-positive, catalase-positive, non-motile bacteria with l-ornithine as a diagnostic diamino acid of the peptidoglycan. The acyl type of the peptidoglycan was N-glycolyl. The major menaquinones were MK-12, 13 and 14. Mycolic acids were not detected. G+C contents of the DNA were in the range 69–71 mol%. Comparative 16S rRNA gene sequence analysis revealed that the isolates belonged to the genus Microbacterium and were closely related to Microbacterium terregens, Microbacterium aurum, Microbacterium koreense, Microbacterium schleiferi and Microbacterium lacticum. However, M. aurum, M. koreense and M. lacticum clearly differed from the isolated strains based on the presence of l-lysine as the cell-wall diamino acid and various other chemotaxonomic characteristics. Levels of DNA–DNA relatedness showed that the isolated strains represented three separate genomic species. Based on both phenotypic and genotypic data, the following novel species of the genus Microbacterium are proposed: Microbacterium deminutum sp. nov. (type strain KV-483T=NRRL B-24453T=NBRC 101278T), Microbacterium pumilum sp. nov. (type strain KV-488T=NRRL B-24452T=NBRC 101279T) and Microbacterium aoyamense sp. nov. (type strain KV-492T=NRRL B-24451T=NBRC 101280T).


Sign in / Sign up

Export Citation Format

Share Document