Yeasts in the Sugiyamaella clade associated with wood-ingesting beetles and the proposal of Candida bullrunensis sp. nov.

2011 ◽  
Vol 61 (7) ◽  
pp. 1751-1756 ◽  
Author(s):  
Janice L. Houseknecht ◽  
Erica L. Hart ◽  
Sung-Oui Suh ◽  
Jianlong J. Zhou

During a survey of yeasts associated with wood-ingesting insects, six strains of the Sugiyamaella clade were isolated from the gut of passalid and tenebrionid beetles and the decayed wood inhabited by them. Phylogeny based on rRNA gene sequences placed these yeasts as members of Sugiyamaella smithiae, Sugiyamaella americana, Candida lignohabitans and a novel species closely related to Su. americana. The only strain of the novel species, EH008T, could be unquestionably distinguished from its relatives by DNA sequences and other taxonomic characteristics. Ascospore production was not observed under the laboratory conditions tested. Therefore, this novel species is proposed as Candida bullrunensis sp. nov. (type strain EH008T = ATCC MYA-4660T = CBS 11840T).

2011 ◽  
Vol 61 (7) ◽  
pp. 1606-1611 ◽  
Author(s):  
Enrico Tortoli ◽  
Erik C. Böttger ◽  
Anna Fabio ◽  
Enevold Falsen ◽  
Zoe Gitti ◽  
...  

Four strains isolated in the last 15 years were revealed to be identical in their 16S rRNA gene sequences to MCRO19, the sequence of which was deposited in GenBank in 1995. In a polyphasic analysis including phenotypic and genotypic features, the five strains (including MCRO19), which had been isolated in four European countries, turned out to represent a unique taxonomic entity. They are scotochromogenic slow growers and are genetically related to the group that included Mycobacterium simiae and 15 other species. The novel species Mycobacterium europaeum sp. nov. is proposed to accommodate these five strains. Strain FI-95228T ( = DSM 45397T  = CCUG 58464T) was chosen as the type strain. In addition, a thorough revision of the phenotypic and genotypic characters of the species related to M. simiae was conducted which leads us to suggest the denomination of the ‘Mycobacterium simiae complex’ for this group.


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 2903-2907 ◽  
Author(s):  
Ana I. Vela ◽  
Encarna Casas-Díaz ◽  
Santiago Lavín ◽  
Lucas Domínguez ◽  
Jose F. Fernández-Garayzábal

Four isolates of an unknown Gram-stain-positive, catalase-negative coccus-shaped organism, isolated from the pharynx of four wild rabbits, were characterized by phenotypic and molecular genetic methods. The micro-organisms were tentatively assigned to the genus Streptococcus based on cellular morphological and biochemical criteria, although the organisms did not appear to correspond to any species with a validly published name. Comparative 16S rRNA gene sequencing confirmed their identification as members of the genus Streptococcus, being most closely related phylogenetically to Streptococcus porcorum 682-03T (96.9  % 16S rRNA gene sequence similarity). Analysis of rpoB and sodA gene sequences showed divergence values between the novel species and S. porcorum 682-03T (the closest phylogenetic relative determined from 16S rRNA gene sequences) of 18.1 and 23.9  %, respectively. The novel bacterial isolate could be distinguished from the type strain of S. porcorum by several biochemical characteristics, such as the production of glycyl-tryptophan arylamidase and α-chymotrypsin, and the non-acidification of different sugars. Based on both phenotypic and phylogenetic findings, it is proposed that the unknown bacterium be assigned to a novel species of the genus Streptococcus, and named Streptococcus pharyngis sp. nov. The type strain is DICM10-00796BT ( = CECT 8754T = CCUG 66496T).


2010 ◽  
Vol 60 (1) ◽  
pp. 244-248 ◽  
Author(s):  
Melissa Fontes Landell ◽  
Raisa Billodre ◽  
Jesus P. Ramos ◽  
Orílio Leoncini ◽  
Marilene H. Vainstein ◽  
...  

Two novel yeast species, Candida aechmeae sp. nov. and Candida vrieseae sp. nov., were isolated from bromeliads in Itapuã Park, Rio Grande do Sul, Brazil. These species are genetically isolated from all other currently recognized ascomycetous yeasts based on their sequence divergence in the D1/D2 domain of the LSU rRNA gene. C. aechmeae sp. nov. is phylogenetically close to Candida ubatubensis, a species also isolated from bromeliads in Brazil, but the novel species can be differentiated on the basis of differences in the D1/D2 domain and positive results for the assimilation of l-arabinose, raffinose, inulin and citrate. Candida vrieseae sp. nov. is phylogenetically placed in a clade near Candida membranifaciens that is composed of several species associated with insects, but the novel species can be differentiated from them by the D1/D2 and ITS gene sequences, positive results for the assimilation of nitrite and a negative result for the assimilation of ethylamine. The type strain for Candida aechmeae sp. nov. is BI153T (=CBS 10831T=NRRL Y-48456T) and the type strain for C. vrieseae sp. nov. is BI146T (=CBS 10829T=NRRL Y-48461T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1855-1859 ◽  
Author(s):  
Ana Raquel O. Santos ◽  
Elisa S. Faria ◽  
Marc-André Lachance ◽  
Carlos A. Rosa

Five strains of a novel methanol-assimilating yeast species were isolated from mango (Mangifera indica) leaves collected at the campus of the Federal University of Minas Gerais in Brazil. The sequences of the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit of the rRNA gene showed that this species belongs to the Ogataea clade and is related to O. allantospora, O. chonburiensis, O. dorogensis, O. kodamae, O. paradorogensis and Candida xyloterini (Ogataea clade). The novel species differs in the D1/D2 domains of the large subunit of the rRNA gene by 12 to 40 substitutions from these Ogataea species. The name Ogataea mangiferae sp. nov. is proposed for this novel species. The type strain of Ogataea mangiferae sp. nov. is UFMG-CM-Y253T ( = CBS 13492T). The Mycobank number is MB 811646.


2011 ◽  
Vol 61 (4) ◽  
pp. 709-715 ◽  
Author(s):  
Seong Chan Park ◽  
Keun Sik Baik ◽  
Han Na Choe ◽  
Chae Hong Lim ◽  
Ho Jun Kim ◽  
...  

Two non-motile, orange- or yellow-pigmented bacteria, designated strains KYW48T and KYW147T, were isolated from seawater collected from the South Sea, Republic of Korea. Cells of both strains were Gram-reaction-negative, aerobic and catalase- and oxidase-positive. The major fatty acids of strain KYW48T were C18 : 1ω7c (35.3 %), summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c) (22.7 %), C17 : 1ω6c (19.8 %), C14 : 0 2-OH (7.4 %) and C16 : 0 (5.9 %), and those of strain KYW147T were C18 : 1ω7c (36.0 %), summed feature 3 (18.3 %), C16 : 0 (14.7 %), 11-methyl C18 : 1ω7c (10.7 %), C16 : 0 2-OH (9.1 %) and C18 : 1ω9c (8.0 %). The predominant isoprenoid quinone of both strains was ubiquinone 10 (Q-10). The DNA G+C contents of strains KYW48T and KYW147T were 63.8 and 67.2 mol%, respectively. A phylogenetic tree based on 16S rRNA gene sequences showed that strains KYW48T and KYW147T were grouped with the members of the family Erythrobacteraceae and formed a distinct clade with the members of the genus Altererythrobacter (<95.7 % sequence similarity). On the basis of the evidence presented in this study, the novel species Altererythrobacter namhicola sp. nov. (type strain KYW48T  = KCTC 22736T  = JCM 16345T) and Altererythrobacter aestuarii sp. nov. (type strain KYW147T  = KCTC 22735T  = JCM 16339T) are proposed.


2011 ◽  
Vol 61 (9) ◽  
pp. 2215-2220 ◽  
Author(s):  
Atsushi Baba ◽  
Masayuki Miyazaki ◽  
Takahiko Nagahama ◽  
Yuichi Nogi

Three chitin-degrading strains representing two novel species were isolated from mangrove forests in Okinawa, Japan. The isolates, ABABA23T, ABABA211 and ABABA212T, were Gram-negative, non-spore-forming, strictly aerobic chemo-organotrophs. The novel strains produced Q-8 as the major isoprenoid quinone component. The predominant fatty acids were iso-C15 : 0 and C16 : 0. On the basis of 16S rRNA gene sequence analysis, the isolates were closely affiliated with members of the genus Microbulbifer. The DNA G+C contents of strains ABABA23T and ABABA212T were 57.8 and 60.2 mol%, respectively. DNA–DNA relatedness values between these two strains and Microbulbifer reference strains were significantly lower than 70 %, the generally accepted threshold level below which strains are considered to belong to separate species. Based on differences in taxonomic characteristics, the three isolates represent two novel species of the genus Microbulbifer, for which the names Microbulbifer chitinilyticus sp. nov. (type strain, ABABA212T = JCM 16148T = NCIMB 14577T) and Microbulbifer okinawensis sp. nov. (type strain, ABABA23T = JCM 16147T = NCIMB 14576T; reference strain, ABABA211) are proposed.


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1323-1328 ◽  
Author(s):  
William J. Wolfgang ◽  
Teresa V. Passaretti ◽  
Reashma Jose ◽  
Jocelyn Cole ◽  
An Coorevits ◽  
...  

A polyphasic analysis was undertaken of seven independent isolates of Gram-negative cocci collected from pathological clinical samples from New York, Louisiana, Florida and Illinois and healthy subgingival plaque from a patient in Virginia, USA. The 16S rRNA gene sequence similarity among these isolates was 99.7–100 %, and the closest species with a validly published name was Neisseria lactamica (96.9 % similarity to the type strain). DNA–DNA hybridization confirmed that these isolates are of the same species and are distinct from their nearest phylogenetic neighbour, N. lactamica . Phylogenetic analysis of 16S and 23S rRNA gene sequences indicated that the novel species belongs in the genus Neisseria . The predominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C18 : 1ω7c. The cellular fatty acid profile, together with other phenotypic characters, further supports the inclusion of the novel species in the genus Neisseria . The name Neisseria oralis sp. nov. (type strain 6332T  = DSM 25276T  = LMG 26725T) is proposed.


2011 ◽  
Vol 61 (7) ◽  
pp. 1667-1670 ◽  
Author(s):  
M. Tseng ◽  
H. C. Liao ◽  
W. P. Chiang ◽  
G. F. Yuan

A novel actinomycete, designated strain 06182M-1T, was isolated from a mangrove soil sample collected from Chiayi County in Taiwan. Phylogenetic analysis based on 16S rRNA gene sequences revealed levels of similarity of 97.0–98.8 % to the type strains of recognized species of the genus Isoptericola. Chemotaxonomic data also supported the placement of strain 06182M-1T within the genus Isoptericola. However, the low levels of DNA–DNA relatedness between the novel strain and the type strains of recognized species of the genus Isoptericola, in combination with differential phenotypic data, demonstrate that strain 06182M-1T represents a novel species of the genus Isoptericola, for which the name Isoptericola chiayiensis sp. nov. is proposed. The type strain is 06182M-1T ( = BCRC 16888T  = KCTC 19740T).


2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2130-2134 ◽  
Author(s):  
Sha Liu ◽  
Dong Jin ◽  
Ruiting Lan ◽  
Yiting Wang ◽  
Qiong Meng ◽  
...  

The taxonomic position of a group of seven closely related lactose-negative enterobacterial strains, which were isolated from fresh faecal samples of Marmota himalayana collected from the Qinghai-Tibetan plateau, China, was determined by using a polyphasic approach. Cells were Gram-reaction-negative, non-sporulating, non-motile, short rods (0.5–1 × 1–2.5 μm). By 16S rRNA gene sequences, the representative strain, HT073016T, showed highest similarity values with Escherichia fergusonii ATCC 35469T at 99.3 %, Escherichia coli ATCC 11775T at 99.2 %, Escherichia albertii LMG 20976T at 98.9 %, Escherichia hermannii CIP 103176T at 98.4 %, and Escherichia vulneris ATCC 33821T at 97.7 %. Phylogenetic analysis based on the 16S rRNA gene sequences showed that the seven strains formed a monophyletic group with five other species of the genus Escherichia. Digital DNA–DNA hybridization studies between strain HT073016T and five other species of the genus Escherichia showed that it shared less than 70 % DNA–DNA relatedness with all known species of the genus Escherichia, supporting the novel species status of the strain. The DNA G+C content of strain HT073016T was 53.8 mol%. On the basis of phenotypic and phylogenetic characteristics, strain HT073016T and the six other HT073016T-like strains were clearly distinct from the type strains of other recognized species of the genus Escherichia and represent a novel species of the genus Escherichia, for which the name Escherichia marmotae sp. nov. is proposed, with HT073016T ( = CGMCC 1.12862T = DSM 28771T) as the type strain.


2010 ◽  
Vol 60 (11) ◽  
pp. 2629-2633 ◽  
Author(s):  
Tomohiko Tamura ◽  
Yuumi Ishida ◽  
Misa Otoguro ◽  
Ken-ichiro Suzuki

Three short spore chain-forming actinomycete strains were isolated from soil samples collected from subtropical islands in Japan. The cell-wall peptidoglycan of these strains contained meso-diaminopimelic acid (meso-A2pm), glutamic acid and alanine. The major isoprenoid quinone was MK-9(H4), iso-C16 : 0 and 2-OH iso-C16 : 0 were the major cellular fatty acids and phosphatidylethanolamine was a component of the polar lipids. The G+C content of the genomic DNA was 67–69 mol%. Phylogenetic analyses based on the 16S rRNA gene sequences showed that the novel strains consistently formed a monophyletic cluster with Amycolatopsis taiwanensis. On the basis this polyphasic taxonomical study, it is proposed that the two new isolates represent two novel species: Amycolatopsis helveola (type strain TT00-43T=NBRC 103394T=KCTC 19329T) and Amycolatopsis pigmentata (type strain TT99-32T=NBRC 103392T=KCTC 19330T).


Sign in / Sign up

Export Citation Format

Share Document