Rhabdothermus arcticus gen. nov., sp. nov., a member of the family Thermaceae isolated from a hydrothermal vent chimney in the Soria Moria vent field on the Arctic Mid-Ocean Ridge

2011 ◽  
Vol 61 (9) ◽  
pp. 2197-2204 ◽  
Author(s):  
Bjørn O. Steinsbu ◽  
Brian J. Tindall ◽  
Vigdis L. Torsvik ◽  
Ingunn H. Thorseth ◽  
Frida L. Daae ◽  
...  

A novel thermophilic member of the family Thermaceae, designated strain 2M70-1T, was isolated from the wall of an active white smoker chimney collected in the Soria Moria vent field at 71 °N in the Norwegian–Greenland Sea. Cells of the strain were Gram-negative, non-motile rods. Growth was observed at 37–75 °C (optimum 65 °C), at pH 6–8 (optimum pH 7.3) and in 1–5 % (w/v) NaCl (optimum 2.5–3.5 %). The isolate was aerobic but could also grow anaerobically using nitrate or elemental sulfur as electron acceptors. The strain was obligately heterotrophic, growing on complex organic substrates like yeast extract, Casamino acids, tryptone and peptone. Pyruvate, acetate, butyrate, sucrose, rhamnose and maltodextrin were used as complementary substrates. The G+C content of the genomic DNA was 68 mol%. Cells possessed characteristic phospholipids and glycolipids. Major fatty acids constituted saturated and unsaturated iso-branched and saturated anteiso-branched forms. Menaquinone 8 was the sole respiratory lipoquinone. Phylogenetic analysis of 16S rRNA gene sequences placed the strain in the family Thermaceae in the phylum ‘Deinococcus–Thermus’, which is consistent with the chemotaxonomic data. On the basis of phenotypic and phylogenetic data, strain 2M70-1T ( = JCM 15963T  = DSM 22268T) represents the type strain of a novel species of a novel genus, for which the name Rhabdothermus arcticus gen. nov., sp. nov. is proposed.

2019 ◽  
Vol 69 (4) ◽  
pp. 975-981 ◽  
Author(s):  
Sven Le Moine Bauer ◽  
Andreas Gilje Sjøberg ◽  
Stéphane L'Haridon ◽  
Runar Stokke ◽  
Irene Roalkvam ◽  
...  

A bacterial strain, designated BAR1T, was isolated from a microbial mat growing on the surface of a barite chimney at the Loki’s Castle Vent Field, at a depth of 2216 m. Cells of strain BAR1T were rod-shaped, Gram-reaction-negative and grew on marine broth 2216 at 10–37 °C (optimum 27–35 °C), pH 5.5–8.0 (optimum pH 6.5–7.5) and 0.5–5.0 % NaCl (optimum 2 %). The DNA G+C content was 57.38 mol%. The membrane-associated major ubiquinone was Q-10, the fatty acid profile was dominated by C18 : 1ω7c (91 %), and the polar lipids detected were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid, one unidentified lipid and one unidentified phospholipid. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain BAR1T clustered together with Rhodobacterales bacterium PRT1, as well as the genera Halocynthiibacter and Pseudohalocynthiibacter in a polyphyletic clade within the Roseobacter clade. Several characteristics differentiate strain BAR1T from the aforementioned genera, including its motility, its piezophilic behaviour and its ability to grow at 35 °C and under anaerobic conditions. Accordingly, strain BAR1T is considered to represent a novel genus and species within the Roseobacter clade, for which the name Profundibacter amoris gen. nov., sp. nov. is proposed. The type strain is Profundibacter amoris BAR1T (=JCM 31874T=DSM 104147T).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
A. Y. Yang ◽  
C. H. Langmuir ◽  
Y. Cai ◽  
P. Michael ◽  
S. L. Goldstein ◽  
...  

AbstractThe plate tectonic cycle produces chemically distinct mid-ocean ridge basalts and arc volcanics, with the latter enriched in elements such as Ba, Rb, Th, Sr and Pb and depleted in Nb owing to the water-rich flux from the subducted slab. Basalts from back-arc basins, with intermediate compositions, show that such a slab flux can be transported behind the volcanic front of the arc and incorporated into mantle flow. Hence it is puzzling why melts of subduction-modified mantle have rarely been recognized in mid-ocean ridge basalts. Here we report the first mid-ocean ridge basalt samples with distinct arc signatures, akin to back-arc basin basalts, from the Arctic Gakkel Ridge. A new high precision dataset for 576 Gakkel samples suggests a pervasive subduction influence in this region. This influence can also be identified in Atlantic and Indian mid-ocean ridge basalts but is nearly absent in Pacific mid-ocean ridge basalts. Such a hemispheric-scale upper mantle heterogeneity reflects subduction modification of the asthenospheric mantle which is incorporated into mantle flow, and whose geographical distribution is controlled dominantly by a “subduction shield” that has surrounded the Pacific Ocean for 180 Myr. Simple modeling suggests that a slab flux equivalent to ~13% of the output at arcs is incorporated into the convecting upper mantle.


Author(s):  
Hye Jeong Kang ◽  
Min-Kyeong Kim ◽  
Su Gwon Roh ◽  
Seung Bum Kim

A Gram-stain-negative, oxidase-positive, catalase-positive, aerobic, orange-pigmented, rod-shaped and non-motile bacterium designated strain MMS17-SY002T was isolated from island soil. The isolate grew at 20–37 °C (optimum, 30 °C), at pH 6.0–9.5 (optimum, pH 7) and in the presence of 0.5–4.0 % (w/v) NaCl (optimum, 2.0 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MMS17-SY002T was mostly related to the genus Muriicola of the family Flavobacteriaceae and had highest sequence similarity of 96.82 % to Muriicola marianensis A6B8T and Muriicola jejuensis EM44T, but formed a distinct phylogenetic line within the genus. Chemotaxonomic analyses showed that menaquinone 6 was the predominant isoprenoid quinone, the major fatty acids were iso-C15 : 1 G and iso-C15 : 0, and the diagnostic polar lipid was phosphatidylethanolamine. The genomic DNA G+C content was 42.4 mol%. Strain MMS17-SY002T could be distinguished from related species by the combination of trypsin, α-chymotrypsin, acid phosphatase, naphthol-AS-BI-phosphohydrolase, α-galactosidase, β-galactosidase and β-glucosidase activities. The orthologous average nucleotide identity between the genomes of strain MMS17-SY002T and M. jejuensis and that between the strain and M. marianensis A6B8T were 73.26 and 73.33%, respectively, thus confirming the separation of the strain from related species at species level. Based on the phenotypic, phylogenetic, chemotaxonomic and genomic characterization, MMS17-SY002T should be recognized as a novel species of the genus Muriicola , for which the name Muriicola soli sp. nov. is proposed. The type strain is MMS17-SY002T (=KCTC 62790T=JCM 32370T).


Author(s):  
Xiaoya Peng ◽  
Yumin Zhang ◽  
Yijing Lu ◽  
Xueyin Zhou ◽  
Zhourui Wei ◽  
...  

A rod-shaped, yellow-pigmented, Gram-stain-negative, non-motile and aerobic bacterium, designated 7-3AT, was isolated from soil from King George Island, maritime Antarctica, and subjected to a polyphasic taxonomic study. Growth occurred at 4–37 °C (optimum, 20°C) and at pH 5.0–9.0 (optimum, pH 7.0–8.0). Tolerance to NaCl was up to 4 % (w/v) with optimum growth in the absence of NaCl. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 7-3AT represented a member of the family Flavobacteriaceae . Strain 7-3AT showed the highest sequence similarities with Kaistella yonginensis HMD 1043T (96.65 %), Kaistella carnis NCTC 13525T (96.53 %), Kaistella chaponensis DSM 23145T (96.27 %), Kaistella antarctica LMG 24720T (96.13 %) and Kaistella jeonii DSM 17048T (96.06 %). A whole genome-level comparison of 7-3AT with K. jeonii DSM 17048T, K. antarctica LMG 24720T, K. chaponensis DSM 23145T, and Kaistella palustris DSM 21579T revealed average nucleotide identity (ANI) values of 79.03, 82.25, 78.12, and 74.42 %, respectively. The major respiratory isoprenoid quinone was identified as MK-6 and a few ubiquinones Q-10 were identified. In addition, flexirubin-type pigments were absent. The polar lipid profile of 7-3AT was found to contain one phosphatidylethanolamine, six unidentified aminolipids (AL) and two unidentified lipids (L). The G+C content of the genomic DNA was determined to be 34.54 mol%. The main fatty acids were iso-C15 : 0, summed feature 9 (comprising iso-C17 : 1ω9c and/or C16 : 0 10-methyl), anteiso-C15 : 0, iso-C13 : 0 and summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c). On the basis of the evidence presented in this study, a novel species of the genus Kaistella , Kaistella flava sp. nov., is proposed, with the type strain 7-3AT (=CCTCC AB 2016141T= KCTC 52492T). Emended descriptions of Kaistella yonginensis , Kaistella jeonii , Kaistella antarctica and Kaistella chaponensis are also given.


2020 ◽  
Vol 7 ◽  
Author(s):  
Eva Ramirez-Llodra ◽  
Ana Hilario ◽  
Emil Paulsen ◽  
Carolina Ventura Costa ◽  
Torkild Bakken ◽  
...  

Minerals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 482 ◽  
Author(s):  
Przemyslaw Kowalczuk ◽  
Hassan Bouzahzah ◽  
Rolf Kleiv ◽  
Kurt Aasly

Simultaneous leaching of seafloor massive sulfides (SMS) from Loki’s Castle on the Arctic Mid-Ocean Ridge (AMOR) and polymetallic nodules (PN) from Clarion Clipperton Zone (CCZ) of the Central Pacific Ocean was studied. Leaching tests were conducted using sulfuric acid and sodium chloride, at a temperature of 80 °C for 48 h under reflux. The effect of PN-to-SMS ratio was examined. It was shown that simultaneous leaching of two different types of marine resources was possible resulting in high dissolution rates of metals. The proposed process has many advantages as it does not require pyrometallurgical pretreatment, and yields solid products (i.e., silica, barite, elemental sulfur, albite, microcline, muscovite), which might be utilized for various industrial applications.


2010 ◽  
Vol 60 (5) ◽  
pp. 1182-1186 ◽  
Author(s):  
Ileana Pérez-Rodríguez ◽  
Jessica Ricci ◽  
James W. Voordeckers ◽  
Valentin Starovoytov ◽  
Costantino Vetriani

A thermophilic, anaerobic, chemosynthetic bacterium, designated strain MB-1T, was isolated from the walls of an active deep-sea hydrothermal vent chimney on the East Pacific Rise at  ° 50′ N 10 ° 17′ W. The cells were Gram-negative-staining rods, approximately 1–1.5 μm long and 0.3–0.5 μm wide. Strain MB-1T grew at 25–65 °C (optimum 55 °C), with 10–35 g NaCl l−1 (optimum 20 g l−1) and at pH 4.5–8.5 (optimum pH 7.0). Generation time under optimal conditions was 45.6 min. Growth occurred under chemolithoautotrophic conditions with H2 as the energy source and CO2 as the carbon source. Nitrate was used as the electron acceptor, with resulting production of ammonium. Thiosulfate, sulfur and selenate were also used as electron acceptors. No growth was observed in the presence of lactate, peptone or tryptone. Chemo-organotrophic growth occurred in the presence of acetate, formate, Casamino acids, sucrose, galactose and yeast extract under a N2/CO2 gas phase. The G+C content of the genomic DNA was 36.0 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that this organism is closely related to Nautilia profundicola AmHT, Nautilia abyssi PH1209T and Nautilia lithotrophica 525T (95, 94 and 93 % sequence identity, respectively). On the basis of phylogenetic, physiological and genetic considerations, it is proposed that the organism represents a novel species within the genus Nautilia, Nautilia nitratireducens sp. nov. The type strain is MB-1T (=DSM 22087T =JCM 15746T).


1982 ◽  
Vol 87 (B3) ◽  
pp. 1773 ◽  
Author(s):  
H. R. Jackson ◽  
I. Reid ◽  
R. K. H. Falconer

Geobiology ◽  
2012 ◽  
Vol 10 (6) ◽  
pp. 548-561 ◽  
Author(s):  
A. Jaeschke ◽  
S. L. Jørgensen ◽  
S. M. Bernasconi ◽  
R. B. Pedersen ◽  
I. H. Thorseth ◽  
...  

Polar Science ◽  
2015 ◽  
Vol 9 (1) ◽  
pp. 146-157 ◽  
Author(s):  
Vera Schlindwein ◽  
Andrea Demuth ◽  
Edith Korger ◽  
Christine Läderach ◽  
Florian Schmid

Sign in / Sign up

Export Citation Format

Share Document