scholarly journals Gaetbulibacter aestuarii sp. nov., isolated from shallow coastal seawater, and emended description of the genus Gaetbulibacter

2012 ◽  
Vol 62 (1) ◽  
pp. 150-154 ◽  
Author(s):  
Seong Chan Park ◽  
Han Na Choe ◽  
Keun Sik Baik ◽  
Kang Hyun Lee ◽  
Chi Nam Seong

A rod-shaped, yellow and strictly aerobic marine bacterium, designated KYW382T, was isolated from seawater collected from the South Sea, Republic of Korea. Cells were Gram-negative and catalase- and oxidase-positive. The major fatty acids were iso-C15 : 1 G, iso-C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 0 3-OH and anteiso-C15 : 0. The DNA G+C content was 32.4 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain KYW382T constituted an evolutionary lineage within the radiation enclosing the members of the genus Gaetbulibacter. The closest neighbour was Gaetbulibacter saemankumensis SMK-12T (96.1 % 16S rRNA gene sequence similarity). A number of phenotypic characteristics distinguished strain KYW382T from the described members of the genus Gaetbulibacter. On the basis of the data presented in this study, strain KYW382T represents a novel species, for which the name Gaetbulibacter aestuarii sp. nov. is proposed. The type strain is KYW382T ( = KCTC 23303T  = JCM 17455T). An emended description of the genus Gaetbulibacter is also given.

2012 ◽  
Vol 62 (2) ◽  
pp. 420-424 ◽  
Author(s):  
Soo-Young Lee ◽  
Mi-Hwa Lee ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-negative, non-spore-forming, non-motile rod, designated MA-My1T, was isolated from a tidal flat sediment of the South Sea, Korea. Strain MA-My1T grew optimally at pH 7.0–7.5, at 30 °C and with 2.0–3.0 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MA-My1T clustered with Lutibacter litoralis CL-TF09T and Lutibacter maritimus S7-2T, with which it exhibited 97.3 and 95.3 % 16S rRNA gene sequence similarity, respectively. Strain MA-My1T contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C15 : 0 3-OH and iso-C16 : 0 3-OH as the major fatty acids. The major polar lipids were phosphatidylethanolamine and two unidentified lipids. The DNA G+C content was 30.6 mol% and DNA–DNA relatedness between strain MA-My1T and L. litoralis JCM 13034T was 6.3±0.8 %. The differential phenotypic properties, together with phylogenetic and genotypic distinctiveness, distinguished strain MA-My1T from the members of the genus Lutibacter. On the basis of the data presented, strain MA-My1T is considered to represent a novel species of the genus Lutibacter, for which the name Lutibacter aestuarii sp. nov. is proposed. The type strain is MA-My1T ( = KCTC 23499T  = CCUG 60022T).


2007 ◽  
Vol 57 (5) ◽  
pp. 947-950 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Jung-Sook Lee ◽  
Tae-Kwang Oh

A Gram-negative, rod-shaped, Flavobacterium-like bacterial strain, DS-20T, was isolated from soil from the island of Dokdo, Korea, and subjected to a polyphasic taxonomic study. Strain DS-20T grew optimally at pH 6.5–7.0 and 25 °C. It contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C17 : 0 3-OH and iso-C17 : 1 ω9c as the major fatty acids. The DNA G+C content was 38.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain DS-20T belonged to the genus Flavobacterium. Levels of 16S rRNA gene sequence similarity between strain DS-20T and the type strains of recognized Flavobacterium species were below 94.9 %. Strain DS-20T differed from phylogenetically related Flavobacterium species in several phenotypic characteristics. On the basis of its phenotypic and phylogenetic distinctiveness, strain DS-20T was classified in the genus Flavobacterium as representing a novel species, for which the name Flavobacterium terrigena sp. nov. is proposed. The type strain is DS-20T (=KCTC 12761T=DSM 17934T).


2007 ◽  
Vol 57 (3) ◽  
pp. 633-638 ◽  
Author(s):  
Zubair Aslam ◽  
Ju Hyoung Lim ◽  
Wan-Taek Im ◽  
Muhammad Yasir ◽  
Young Ryun Chung ◽  
...  

A novel, moderately halophilic, Gram-positive coccus, designated strain S2R53-5T, was isolated from jeotgal, a traditional Korean fermented seafood. The organism was strictly aerobic, non-motile, non-sporulating and catalase- and oxidase-positive. Strain S2R53-5T grew in the presence of 0.5–15 % (w/v) NaCl and at pH 6.5–11.0, with optimum growth at 5 % (w/v) NaCl and pH 7.0. The temperature range for growth was 20.0–30.0 °C, with an optimum temperature of 30 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S2R53-5T belongs to the family Staphylococcaceae and was most closely related to Salinicoccus roseus DSM 5351T (96.8 % gene sequence similarity), Salinicoccus hispanicus DSM 5352T (96.1 %), Salinicoccus alkaliphilus T8T (95.2 %) and Jeotgalicoccus halotolerans YKJ-101T (95.1 %). The genomic DNA G+C content was 47.0 mol%, which is in the range of 46–51 mol% that is characteristic for the genus Salinicoccus. Levels of DNA–DNA relatedness between strain S2R53-5T and S. roseus DSM 5351T, S. hispanicus DSM 5352T and S. alkaliphilus KCTC 13928T were 32.2, 15.4 and 4.6 %, respectively. Chemotaxonomic data (major menaquinone, MK-6; major fatty acids, iso-C15 : 0 and anteiso-C15 : 0; cell-wall murein type, Lys and Gly) and 16S rRNA gene sequence analysis supported the affiliation of strain S2R53-5T with the genus Salinicoccus. The combined evidence from the low DNA–DNA relatedness, physiological, biochemical and other genotypic data indicate that strain S2R53-5T clearly represents a novel species of the genus Salinicoccus, for which the name Salinicoccus jeotgali sp. nov. is proposed. The type strain is S2R53-5T (=KCTC 13030T=LMG 23640T).


2007 ◽  
Vol 57 (10) ◽  
pp. 2236-2240 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Jung-Sook Lee ◽  
Hyun Woo Oh ◽  
Tae-Kwang Oh

A Gram-negative, rod-shaped, Brevundimonas-like bacterial strain, DS-18T, was isolated from soil in Dokdo, Korea, and its exact taxonomic position was investigated by using a polyphasic approach. Strain DS-18T grew optimally at pH 6.5–7.0 and 25 °C without NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain DS-18T belonged to the genus Brevundimonas. Strain DS-18T contained Q-10 as the predominant ubiquinone and C18 : 1 ω7c and C16 : 0 as the major fatty acids. The DNA G+C content was 68.7 mol%. Strain DS-18T exhibited levels of 16S rRNA gene sequence similarity of 96.3–98.7 % to the type strains of Brevundimonas species and Mycoplana bullata. Mean DNA–DNA relatedness values between strain DS-18T and the type strains of phylogenetically related Brevundimonas species and M. bullata were in the range 15–32 %. Strain DS-18T differed from Brevundimonas species and M. bullata in several phenotypic characteristics. On the basis of phenotypic, phylogenetic and genetic data, strain DS-18T represents a novel species of the genus Brevundimonas, for which the name Brevundimonas lenta sp. nov. is proposed. The type strain is DS-18T (=KCTC 12871T =JCM 14602T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4895-4901 ◽  
Author(s):  
Zhaoxu Ma ◽  
Chongxi Liu ◽  
Jianlong Fan ◽  
Hairong He ◽  
Chuang Li ◽  
...  

A novel actinobacterium, designated strain NEAU-QY2T, was isolated from the leaves of Sonchus oleraceus L. specimen, collected from Wuchang, Heilongjiang Province, China. A polyphasic study was carried out to establish the taxonomic position of this strain. The organism formed single spores with rough surfaces on substrate mycelia. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NEAU-QY2T belonged to the genus Plantactinospora and formed a monophyletic clade with its closest related strains Plantactinospora endophytica YIM 68255T (99.2 % 16S rRNA gene sequence similarity), Plantactinospora veratri NEAU-FHS4T (98.8 %) and Plantactinospora mayteni YIM 61359T (98.7 %), an association that was supported by a bootstrap value of 90 % in the neighbour-joining tree and also recovered with the maximum-likelihood algorithm. However, DNA–DNA hybridization values between strain NEAU-QY2T and the three closely related strains were below 70 %. With reference to phenotypic characteristics, phylogenetic data and DNA–DNA hybridization results, strain NEAU-QY2T was distinguished from closely related strains and is classified as representing a novel species of the genus Plantactinospora, for which the name Plantactinospora sonchi sp. nov. is proposed. The type strain is NEAU-QY2T ( = CGMCC 4.7216T = JCM 30345T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4809-4815 ◽  
Author(s):  
Xiang Wang ◽  
Hong-Xing Yang ◽  
Ying-Kun Zhang ◽  
Shi-Jun Zhu ◽  
Xiao-Wei Liu ◽  
...  

A yellow-pigmented bacterial strain, designated Y2T, was isolated from farmland soil in Bengbu, Anhui province, China. Cells of strain Y2T were Gram-stain-negative, strictly aerobic, non-motile and rod-shaped. Strain Y2T grew optimally at pH 7.0, 30 °C and in the presence of 2 % (w/v) NaCl. The DNA G+C content was 68.9 mol%. The major fatty acids (>5 %) were iso-C15 : 0, iso-C17 : 0, summed feature 9 (C16 : 0 10-methyl and/or iso-C17 : 1ω9c), iso-C11 : 0 3-OH and iso-C11 : 0. The major respiratory quinone was ubiquinone-8 (Q-8), and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Phylogenetic analysis of the 16S rRNA gene sequences showed that strain Y2T was most closely related to Luteimonas mephitis B1953/27.1T (99.1 % 16S rRNA gene sequence similarity), followed by Luteimonas lutimaris G3T (98.6 %), Luteimonas abyssi XH031T (96.2 %) and Luteimonas aquatica RIB1-20T (96.0 %). Strain Y2T exhibited low DNA–DNA relatedness with Luteimonas mephitis B1953/27.1T (43.6 ± 0.5 %) and Luteimonas lutimaris G3T (43.9 ± 2.1 %). On the basis of phenotypic, genotypic and phylogenetic evidence, strain Y2T represents a novel species of the genus Luteimonas, for which the name Luteimonas soli sp. nov. is proposed. The type strain is Y2T ( = ACCC 19799T = KCTC 42441T).


2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2042-2047 ◽  
Author(s):  
Sooyeon Park ◽  
Yong-Taek Jung ◽  
Sung-Min Won ◽  
Jung-Sook Lee ◽  
Jung-Hoon Yoon

A Gram-stain-positive, facultatively anaerobic, non-spore-forming, non-flagellated and rod-shaped or ovoid bacterial strain, designated BS-12MT, was isolated from a tidal flat sediment on the South Sea, South Korea. Strain BS-12MT grew optimally at 35 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. The neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that strain BS-12MT fell within the cluster comprising the type strains of species of the genus Demequina, joining the type strain of Demequina aestuarii with which it shared the highest sequence similarity (98.6 %). It exhibited 16S rRNA gene sequence similarity of 96.1–97.9 % to the type strains of other species of the genus Demequina. The peptidoglycan type of strain BS-12MT was A4β based on l-Orn − l-Ser − d-Glu. Strain BS-12MT contained demethylmenaquinone-9(H4) as the major menaquinone and anteiso-C15:0 and C16:0 as the major fatty acids. The major polar lipids of strain BS-12MT were phosphatidylinositol and phosphatidylinositolmannoside. The DNA G+C content of strain BS-12MT was 70.7 mol% and its DNA–DNA relatedness values with the type strains of five phylogenetically related species of the genus Demequina were 15–34 %. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, revealed that strain BS-12MT is separate from other species of the genus Demequina. On the basis of the data presented, strain BS-12MT is considered to represent a novel species of the genus Demequina, for which the name Demequina activiva sp. nov. is proposed. The type strain is BS-12MT ( = KCTC 29674T = NBRC 110675T).


2006 ◽  
Vol 56 (7) ◽  
pp. 1485-1488 ◽  
Author(s):  
Olga O. Glazunova ◽  
Didier Raoult ◽  
Véronique Roux

An unidentified Gram-negative-staining, aerobic, rod-shaped, spore-forming bacterium was isolated from a sample of cerebrospinal fluid. Based on comparative analysis of 16S rRNA gene sequences and phenotypic characteristics, the novel isolate was included in the Bacillus sphaericus-like group. The isolate was closely related to Bacillus odysseyi and Bacillus silvestris, with 96.2 and 94.4 % 16S rRNA gene sequence similarity, respectively. The major fatty acid was iso-C15 : 0 (48 %). The name Bacillus massiliensis sp. nov. is proposed for the novel isolate, with strain 4400831T (=CIP 108446T=CCUG 49529T) as the type strain.


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 4239-4243 ◽  
Author(s):  
Jie Pan ◽  
Cong Sun ◽  
Rui-Jun Wang ◽  
Min Wu

Strain PSRT was isolated from seawater of the Pacific Ocean. Cells of the strain were Gram-stain-negative, strictly aerobic, rod-shaped and motile by gliding. Growth was observed at 4–40 °C (optimum 25–30 °C), at pH 6.0–9.5 (optimum pH 7.0–7.5) and with 0.5–8 % (w/v) NaCl (optimum 2–3 %). The major fatty acids were iso-C15 : 1 G (18.9 %), iso-C15 : 0 (26.3 %) and iso-C17 : 0 3-OH (17.9 %). The predominant isoprenoid quinone was MK-7, and the DNA G+C content was 49.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain PSRT was most closely related to Roseivirga spongicola UST030701-084T (96.9 % 16S rRNA gene sequence similarity), and they formed a distinct clade in neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees with significant bootstrap supports. Based on phenotypic, chemotaxonomic and phylogenetic characteristics, strain PSRT represents a novel species of the genus Roseivirga, for which the name Roseivirga marina sp. nov. is proposed. The type strain is PSRT ( = MCCC 1K00459T = KCTC 42444T).


2012 ◽  
Vol 62 (1) ◽  
pp. 106-111 ◽  
Author(s):  
Marina G. Kalyuzhnaya ◽  
David A. C. Beck ◽  
Alexey Vorobev ◽  
Nicole Smalley ◽  
Dennis D. Kunkel ◽  
...  

Phylogenetic positions, and genotypic and phenotypic characteristics of three novel methylotrophic isolates, strains 301T, 30S and SIP3-4, from sediment of Lake Washington, Seattle, USA, are described. The strains were restricted facultative methylotrophs capable of growth on single carbon compounds (methylamine and methanol) in addition to a limited range of multicarbon compounds. All strains used the N-methylglutamate pathway for methylamine oxidation. Strain SIP3-4 possessed the canonical (MxaFI) methanol dehydrogenase, but strains 301T and 30S did not. All three strains used the ribulose monophosphate pathway for C1 assimilation. The major fatty acids in the three strains were C16 : 0 and C16 : 1ω7c. The DNA G+C contents of strains 301T and SIP3-4 were 42.6 and 54.6 mol%, respectively. Based on 16S rRNA gene sequence phylogeny and the relevant phenotypic characteristics, strain SIP3-4 was assigned to the previously defined species Methylovorus glucosotrophus. Strains 301T and 30S were closely related to each other (100 % 16S rRNA gene sequence similarity) and shared 96.6 % 16S rRNA gene sequence similarity with a previously described isolate, Methylotenera mobilis JLW8T. Based on significant genomic and phenotypic divergence with the latter, strains 301T and 30S represent a novel species within the genus Methylotenera, for which the name Methylotenera versatilis sp. nov. is proposed; the type strain is 301T ( = VKM B-2679T = JCM 17579T). An emended description of the genus Methylotenera is provided.


Sign in / Sign up

Export Citation Format

Share Document