Leptochlorella corticola gen. et sp. nov. and Kalinella apyrenoidosa sp. nov.: two novel Chlorella-like green microalgae (Trebouxiophyceae, Chlorophyta) from subaerial habitats

2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 377-387 ◽  
Author(s):  
Jiří Neustupa ◽  
Yvonne Němcová ◽  
Jana Veselá ◽  
Jana Steinová ◽  
Pavel Škaloud

The diversity of green microalgae in subaerial habitats remains largely unexplored and a number of new genus- and species-level lineages have been discovered recently. The traditional green algal genus, Chlorella, which accommodated coccoid unicellular green algal species with globular to oval cells, reproducing entirely by autospores, has been found to be polyphyletic. In this study, we provide a detailed characterization of two strains of microalgae isolated from tree bark in the Mediterranean. These algae share the general Chlorella-like morphology and their 18S rRNA and rbcL gene sequences place them in the Trebouxiophyceae. Strain CAUP H8401 forms an independent trebouxiophycean lineage, together with three previously published 18S rRNA gene environmental sequences of undescribed microalgae, which were retrieved from profoundly different habitats. In contrast, strain CAUP H7902 is related to Kalinella bambusicola in the Watanabea clade of the Trebouxiophyceae on the basis of its 18S rRNA gene sequence. This relationship is also supported by the rbcL gene sequence, acquired from the type strain of K. bambusicola. The investigated strains are described as representatives of a novel species in a new genus, Leptochlorella corticola gen. et sp. nov., and a novel species, Kalinella apyrenoidosa sp. nov., according to the International Code of Nomenclature for Algae, Fungi and Plants.

1998 ◽  
Vol 34 (2) ◽  
pp. 312-318 ◽  
Author(s):  
Gregory C. Booton ◽  
Gary L. Floyd ◽  
Paul A. Fuerst

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Stefanos Banos ◽  
Guillaume Lentendu ◽  
Anna Kopf ◽  
Tesfaye Wubet ◽  
Frank Oliver Glöckner ◽  
...  

Following publication of the original article [1], we have been notified that three of the primer names identified as most promising candidates for fungal community surveys were incorrectly renamed following the primer nomenclature system proposed by Gargas & DePriest [2].


2015 ◽  
Vol 81 (7) ◽  
pp. 2433-2444 ◽  
Author(s):  
Sandra Kittelmann ◽  
Savannah R. Devente ◽  
Michelle R. Kirk ◽  
Henning Seedorf ◽  
Burk A. Dehority ◽  
...  

ABSTRACTThe development of high-throughput methods, such as the construction of 18S rRNA gene clone or pyrosequencing libraries, has allowed evaluation of ciliate community composition in hundreds of samples from the rumen and other intestinal habitats. However, several genera of mammalian intestinal ciliates have been described based only on morphological features and, to date, have not been identified using molecular methods. Here, we isolated single cells of one of the smallest but widely distributed intestinal ciliates,Charonina ventriculi, and sequenced its 18S rRNA gene. We verified the sequence in a full-cycle rRNA approach using fluorescencein situhybridization and thereby assigned an 18S rRNA gene sequence to this species previously known only by its morphology. Based on its full-length 18S rRNA gene sequence,Charonina ventriculiwas positioned within the phylogeny of intestinal ciliates in the subclass Trichostomatia. The taxonomic framework derived from this phylogeny was used for taxonomic assignment of trichostome ciliate 18S rRNA gene sequence data stemming from high-throughput amplicon pyrosequencing of rumen-derived DNA samples. The 18S rRNA gene-based ciliate community structure was compared to that obtained from microscopic counts using the same samples. Both methods allowed identification of dominant members of the ciliate communities and classification of the rumen ciliate community into one of the types first described by Eadie in 1962. Notably, each method is associated with advantages and disadvantages. Microscopy is a highly accurate method for evaluation of total numbers or relative abundances of different ciliate genera in a sample, while 18S rRNA gene pyrosequencing represents a valuable alternative for comparison of ciliate community structure in a large number of samples from different animals or treatment groups.


2007 ◽  
Vol 57 (5) ◽  
pp. 959-963 ◽  
Author(s):  
Jaewoo Yoon ◽  
Mina Yasumoto-Hirose ◽  
Atsuko Katsuta ◽  
Hiroshi Sekiguchi ◽  
Satoru Matsuda ◽  
...  

An obligately aerobic, Gram-negative, non-spore-forming, non-motile, spherical bacterium, designated strain 04OKA010-24T, was isolated from seawater surrounding the hard coral Galaxea fascicularis L., collected at Majanohama, Akajima, Japan, and was subjected to a polyphasic taxonomic study. Phylogenetic analyses based on the 16S rRNA gene sequence indicated that the new strain represented a member of the phylum ‘Verrucomicrobia’ and shared 84–95 % sequence similarity with cultivated strains of ‘Verrucomicrobia’ subdivision 4. Amino acid analysis of the cell-wall hydrolysate indicated the absence of muramic acid and diaminopimelic acid, which suggested that the strain did not contain peptidoglycan in the cell wall. The G+C content of the DNA was 53.9 mol%. MK-7 was the major menaquinone and C14 : 0, C18 : 1 ω9c and C18 : 0 were the major fatty acids. On the basis of these data, it was concluded that strain 04OKA010-24T represents a novel species in a new genus in subdivision 4 of the phylum ‘Verrucomicrobia’, for which the name Coraliomargarita akajimensis gen. nov., sp. nov. is proposed. The type strain of Coraliomargarita akajimensis is 04OKA010-24T (=MBIC06463T=IAM 15411T=KCTC 12865T).


2007 ◽  
Vol 43 (1) ◽  
pp. 344-352 ◽  
Author(s):  
N.E. Redmond ◽  
R.W.M. van Soest ◽  
M. Kelly ◽  
J. Raleigh ◽  
S.A.A. Travers ◽  
...  

2013 ◽  
Vol 63 (Pt_12) ◽  
pp. 4663-4668 ◽  
Author(s):  
Ji Young Kang ◽  
Jeesun Chun ◽  
Kwang Yeop Jahng

A Gram-reaction-negative, rod-shaped, non-motile, red-pigmented bacterium, designated strain GSR3061T, was isolated from a water sample of the Mangyung estuary enclosed by the Saemangeum Embankment in JEOLlabuk-do of South Korea, and characterized using a polyphasic approach. 16S rRNA gene sequence analysis of strain GSR3061T indicated that the isolate belonged to the phylum Bacteroidetes and exhibited similarity levels of 94.7 % to Rufibacter tibetensis NRRL B-51285T, 92.4 % to Adhaeribacter terreus KACC 14257T and 91.9 % to Pontibacter korlensis KACC 15371T. Growth was observed at 15–40 °C and pH 6.5–9.5. The major cellular fatty acids of the novel strain were summed feature 4 (comprising iso-C17 : 1 I and/or anteiso-C17 : 1 B), iso-C15 : 0, C17 : 1ω6c and iso-C16 : 1 H. Flexirubin-type pigments were absent. The DNA G+C content of strain GSR3061T was 44.9 mol% and the major quinone was MK-7. The polar lipid profile consisted mainly of phosphatidylethanolamine; three unidentified lipids, two unknown aminolipids, two unknown phospholipids, an unknown aminophospholipid and an unknown glycolipid were also present. On the basis of the evidence presented, it is concluded that strain GSR3061T represents a novel species of a new genus, for which the name Nibribacter koreensis gen. nov., sp. nov. is proposed. The type strain of Nibribacter koreensis is GSR3061T ( = KACC 16450T = JCM 17917T).


2011 ◽  
Vol 182 (2-4) ◽  
pp. 150-162 ◽  
Author(s):  
Mamohale E. Chaisi ◽  
Kgomotso P. Sibeko ◽  
Nicola E. Collins ◽  
Fred T. Potgieter ◽  
Marinda C. Oosthuizen

2014 ◽  
Vol 113 (12) ◽  
pp. 4651-4658 ◽  
Author(s):  
Thomas G. Rosser ◽  
Matt J. Griffin ◽  
Sylvie M. A. Quiniou ◽  
Lester H. Khoo ◽  
Linda M. Pote

2002 ◽  
Vol 48 (5) ◽  
pp. 418-426 ◽  
Author(s):  
Steve P Trosok ◽  
John H.T Luong ◽  
David F Juck ◽  
Brian T Driscoll

After isolation from a pulp mill wastewater treatment facility, two yeast strains, designated SPT1 and SPT2, were characterized and used in the development of mediated biochemical oxygen demand (BOD) biosensors for wastewater. 18S rRNA gene sequence analysis revealed a one nucleotide difference between the sequence of SPT1 and those of Candida sojae and Candida viswanthii. While SPT2 had the highest overall homology to Pichia norvegensis, at only 73.5%, it is clearly an ascomycete, based on BLAST comparisons and phylogenetic analyses. Neighbor-joining dendrograms indicated that SPT1 clustered with several Candida spp., and that SPT2 clustered with Starmera spp., albeit as a very deep branch. Physiological tests, microscopic observations, and fatty acid analysis confirmed that SPT1 and SPT2 are novel yeast strains. Physiological tests also indicated that both strains had potential for use in mediated biosensors for estimation of BOD in wastewater. The lower detection limits of SPT1- and SPT2-based K3Fe(CN)6-mediated biosensors for a pulp-mill effluent were 2 and 1 mg BOD/L, respectively. Biosensor-response times for effluents from eight different pulp mills were in the range of 5 min. Reliability and sensitivity of the SPT1- and SPT2-based biosensors were good, but varied with the wastewater.Key words: yeast characterization, 18S rRNA gene sequence, pulp-mill wastewater, BOD5, mediated BOD biosensor.


Sign in / Sign up

Export Citation Format

Share Document