scholarly journals Polymorphobacter multimanifer gen. nov., sp. nov., a polymorphic bacterium isolated from antarctic white rock

2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 2034-2040 ◽  
Author(s):  
Wakao Fukuda ◽  
Yohzo Chino ◽  
Shigeo Araki ◽  
Yuka Kondo ◽  
Hiroyuki Imanaka ◽  
...  

A Gram-stain-negative, non-spore-forming, aerobic, oligotrophic bacterium (strain 262-7T) was isolated from a crack of white rock collected in the Skallen region of Antarctica. Strain 262-7T grew at temperatures between −4 and 30 °C, with optimal growth at 25 °C. The pH range for growth was between pH 6.0 and 9.0, with optimal growth at approximately pH 7.0. The NaCl concentration range allowing growth was between 0.0 and 1.0 %, with an optimum of 0.5 %. Strain 262-7T showed an unprecedented range of morphological diversity in response to growth conditions. Cells grown in liquid medium were circular or ovoid with smooth surfaces in the lag phase. In the exponential phase, ovoid cells with short projections were observed. Cells in the stationary phase possessed long tentacle-like projections intertwined intricately. By contrast, cells grown on agar plate medium or in liquid media containing organic compounds at low concentration exhibited short- and long-rod-shaped morphology. These projections and morphological variations clearly differ from those of previously described bacteria. Ubiquinone 10 was the major respiratory quinone. The major fatty acids were C17 : 1ω6c (28.2 %), C16 : 1ω7c (22.6 %), C18 : 1ω7c (12.9 %) and C15 : 0 2-OH (12.3 %). The G+C content of genomic DNA was 68.0 mol%. Carotenoids were detected from the cells. Comparative analyses of 16S rRNA gene sequences indicated that strain 262-7T belongs to the family Sphingomonadaceae , and that 262-7T should be distinguished from known genera in the family Sphingomonadaceae . According to the phylogenetic position, physiological characteristics and unique morphology variations, strain 262-7T should be classified as a representative of a novel genus of the family Sphingomonadaceae . Here, a novel genus and species with the name Polymorphobacter multimanifer gen. nov., sp. nov. is proposed (type strain 262-7T = JCM 18140T = ATCC BAA-2413T). The novel species was named after its morphological diversity and formation of unique projections.

Author(s):  
Sára Szuróczki ◽  
Gorkhmaz Abbaszade ◽  
Dominika Buni ◽  
Károly Bóka ◽  
Peter Schumann ◽  
...  

Three Gram-stain-negative, non-motile, oxidase- and catalase-positive, rod-shaped, black, facultative phototrophic bacterial strains, RG-N-1aT, DMA-N-7a and RA-N-9 were isolated from the water sample from Lake Fertő/Neusiedler See (Hungary). Phylogenetic analysis based on the 16S rRNA gene sequences revealed that the strains form a distinct linage within the family Rhodobacteraceae and their closest relatives are Tabrizicola piscis K13M18T (96.32%) followed by Cypionkella psychrotolerans PAMC 27389T (96.25%). The novel bacterial strains prefer alkaline environments and grow optimally at 23–33 °C in the presence of NaCl (1–2 w/v%). Bacteriochlorophyll a was detected. Cells contained exclusively ubiquinone Q-10. The major cellular fatty acids were C18 : 1ω7c, C19 : 1iso ω5c, C18 : 0 3-OH and C18 : 1ω7c 11-methyl. The polar lipid profile contains diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unidentified phospholipid and four unidentified lipids. The assembled draft genome of RG-N-1aT had 33 contigs with N50 values 315 027 nt, 96× genome coverage, total length of 4 326 551 bp and a DNA G+C content of 64.9%. Genome-based calculations (genome-to-genome distance and DNA G+C percentage) and pairwise amino acid identity (AAI <73.5%) indicate that RG-N-1aT represents a novel genus. RG-N-1aT (=DSM 108317T=NCAIM B.02647T) is suggested as the type strain of a novel genus and species in the family Rhodobacteraceae , for which the name Fertoeibacter niger gen. nov., sp. nov. is proposed.


Author(s):  
Yu-Wen Wang ◽  
Wen-Ting Ren ◽  
Yuan-You Xu ◽  
Xin-Qi Zhang

An aerobic, Gram-stain-negative, non-sporulating, flagellated and spindle-like bacterium, designated HY14T, was isolated from a pickle-processing factory wastewater sample. The isolate chemoheterotrophically grew at 4–42 °C (optimum, 35 °C) and pH 5.5–9.0 (optimum, pH 6.0–6.5). Salt was required for growth (0.5–12 % NaCl, w/v). A deep brown and water-soluble uncharacterized pigment was produced when grown in certain media. The predominant fatty acids (>5 %) included C16 : 0, C18 : 1  ω7c, 11-methyl C18 : 1  ω7c and C19 : 0 cyclo ω8c. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, two unidentified aminolipids, two unidentified phospholipids, two unidentified glycolipids and five unknown lipids. The major isoprenoid quinone was ubiquinone-10. Pairwise alignment based on 16S rRNA gene sequences indicated that strain HY14T had the highest sequence similarity to genera Maritimibacter (95.61–96.05 %) and Boseongicola (95.82 %). Phylogenetic analysis based on core genome illustrated that strain HY14T formed a monophyletic lineage with members of the genus Maritimibacter in the clade of the Roseobacter group in the family Rhodobacteraeceae. The core-gene average amino acid identity used to define bacterial genera by a threshold of 60–80 % was calculated to be 68.56–76.5 % between HY14T and closely related taxa. Several genomic characteristics, such as carrying two RuBisCO-mediated pathways and different osmoprotectant transport pathways, exhibited the genotypic discrepancies of strain HY14T. Based on the polyphasic taxonomic characterization, strain HY14T is considered to represent a novel species of a novel genus belonging to the family Rhodobacteraeceae, for which the name Muriiphilus fusiformis gen. nov., sp. nov. is proposed. The type strain is HY14T (=CGMCC 1.15973T=KCTC 52499T). Maritimibacter lacisalsi (Zhong et al. 2015) is considered to diverge from Maritimibacter alkaliphilus at the genus level, and should be reassigned as a novel genus, for which the name Muriicola lacisalsi gen. nov., comb. nov. is proposed.


2012 ◽  
Vol 62 (Pt_4) ◽  
pp. 954-959 ◽  
Author(s):  
Xianbo Chang ◽  
Wenzheng Liu ◽  
Xiao-Hua Zhang

A novel halophilic, filamentous, actinomycete strain, designated CXB832T, was isolated from a salt pond in Qingdao, China. Optimal growth occurred at 37 °C, pH 7.0–8.0 and 9–12 % (w/v) NaCl. Strain CXB832T formed pale yellow to deep yellow branched substrate mycelium without fragmentation. Abundant white aerial mycelium differentiated into long chains of spores and the spores were rod-shaped with smooth surfaces. Strain CXB832T contained meso-diaminopimelic acid as the diagnostic diamino acid of the cell-wall peptidoglycan, and glucose and xylose as the major whole-cell sugars. The phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phospholipids, glycolipid and unidentified lipids. MK-10(H8), MK-9(H8), MK-10(H2) and MK-10(H6) were the predominant menaquinones. The major fatty acids were i-C16 : 0 (30.71 %), ai-C17 : 0 (13.31 %) and C16 : 0 (11.28 %). The G+C content of the DNA was 60.1 mol%. Comparative analysis of 16S rRNA gene sequences showed that the novel strain was most closely related to genera within the family Nocardiopsaceae , but formed a separate lineage. The highest sequence similarities were to Nocardiopsis arabia DSM 45083T (95.4 %) and Haloactinospora alba DSM 45015T (94.9 %). On the basis of phenotypic, chemotaxonomic and phylogenetic distinctiveness, strain CXB832T represents a new genus and novel species in the family Nocardiopsaceae , for which the name Salinactinospora qingdaonensis gen. nov., sp. nov. is proposed. The type strain of the type species is CXB832T ( = DSM 45442T = LMG 25567T).


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 501-505 ◽  
Author(s):  
Jonathan Kennedy ◽  
Lekha Menon Margassery ◽  
Niall D. O’Leary ◽  
Fergal O’Gara ◽  
John Morrissey ◽  
...  

A Gram-stain-negative, rod-shaped, orange-coloured, catalase- and oxidase-positive, non-motile bacterium, designated strain 92VT, was isolated from the marine sponge Amphilectus fucorum, collected from Lough Hyne, County Cork, Ireland. 16S rRNA gene sequence analysis revealed that strain 92VT clustered with members of the family Flavobacteriaceae , the closest member being Aquimarina latercula NCIMB 1399T, with a gene sequence similarity of 97.5 %. Strain 92VT required seawater for growth with optimal growth occurring at 25 °C, at pH 6–7 and with 3 % (w/v) NaCl. MK-6 was the sole respiratory quinone present and the major fatty acids were iso-C17 : 0 3-OH, iso-C15 : 0, iso-C17 : 1ω9c and iso-C15 : 0 3-OH. The DNA G+C content was 36.1 mol%. Combined phenotypic differences and phylogenetic analysis indicate that strain 92VT represents a novel species of the genus Aquimarina , for which the name Aquimarina amphilecti sp. nov. is proposed. The type strain is 92VT ( = NCIMB 14723T = DSM 25232T).


2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3473-3477 ◽  
Author(s):  
Qian-Qian Liu ◽  
Xiao-Li Li ◽  
Alejandro P. Rooney ◽  
Zong-Jun Du ◽  
Guan-Jun Chen

A novel Gram-stain-negative, facultatively anaerobic, catalase- and oxidase-positive, non-motile and pink-pigmented bacterium, designated G22T, was isolated from Gahai, a saltwater lake in Qinghai province, China. Optimal growth occurred at 33–35 °C, pH 7.0–7.5, and in the presence of 2–4 % (w/v) NaCl. The DNA G+C content was 40.0 mol%. The major polar lipids were phosphatidylethanolamine and three unknown lipids. The predominant cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C17 : 0 3-OH and iso-C15 : 0 3-OH, and MK-7 was the main respiratory quinone. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain G22T fell within the class Bacteroidia . Its closest phylogenetic neighbour was the recently described species Draconibacterium orientale , the sole member of the family Draconibacteriaceae , with merely 90.04 % sequence similarity. On the basis of phenotypic, chemotaxonomic and phylogenetic evidence observed, a novel species in a new genus, Tangfeifania diversioriginum gen. nov., sp. nov., is proposed within the family Draconibacteriaceae . The type strain is G22T ( = CICC 10587T = DSM 27063T).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 479-483 ◽  
Author(s):  
Anna A. Perevalova ◽  
Ilya V. Kublanov ◽  
R. V. Baslerov ◽  
Gengxin Zhang ◽  
Elizaveta A. Bonch-Osmolovskaya

A novel thermophilic bacterium, strain Kam1851T, was isolated from a terrestrial hot spring of the Uzon Caldera, Kamchatka Peninsula, Russia. Cells of strain Kam1851T were spore-forming rods with a Gram-positive type of cell wall. Growth was observed between 46 and 78 °C, and pH 5.5–8.5. The optimal growth (doubling time, 6.0 h) was at 60–65 °C and pH 6.5. The isolate was an obligate anaerobe growing in pre-reduced medium only. It grew on mineral medium with molecular hydrogen or formate as electron donors, and elemental sulfur, thiosulfate or polysulfide as electron acceptors. The main cellular fatty acids were C16 : 0 (34.2 %), iso-C16 : 0 (18 %), C18 : 0 (12.8 %) and iso-C17 : 0 (11.1 %). The G+C content of the genomic DNA of strain Kam1851T was 63 mol%. 16S rRNA gene sequence analysis showed that strain Kam1851T belonged to the order Thermoanaerobacterales , but it was not closely related to representatives of any genera with validly published names. The most closely related strains, which had no more than 89.2 % sequence similarity, were members of the genera Ammonifex and Caldanaerobacter . On the basis of its phylogenetic position and novel phenotypic features, isolate Kam1851T is proposed to represent a novel species in a new genus, Brockia lithotrophica gen. nov., sp. nov.; the type strain of Brockia lithotrophica is Kam1851T ( = DSM 22653T = VKM B-2685T).


2020 ◽  
Vol 70 (11) ◽  
pp. 5918-5925 ◽  
Author(s):  
Hyun-Ju Noh ◽  
Seung Chul Shin ◽  
Yerin Park ◽  
Ahyoung Choi ◽  
Kiwoon Baek ◽  
...  

Two Gram-stain-negative, facultative anaerobic, chemoheterotrophic, pink-coloured, rod-shaped and non-motile bacterial strains, PAMC 26568 and PAMC 26569T, were isolated from an Antarctic lichen. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains PAMC 26568 and PAMC 26569T belong to the family Acetobacteraceae and the most closely related species are Gluconacetobacter takamatsuzukensis (96.1 %), Gluconacetobacter tumulisoli (95.9 %) and Gluconacetobacter sacchari (95.7 %). Phylogenomic and genomic relatedness analyses showed that strains PAMC 26568 and PAMC 26569T are clearly distinguished from other genera in the family Acetobacteraceae by average nucleotide identity values (<72.8 %) and the genome-to-genome distance values (<22.5 %). Genomic analysis revealed that strains PAMC 26568 and PAMC 26569T do not contain genes involved in atmospheric nitrogen fixation and utilization of sole carbon compounds such as methane and methanol. Instead, strains PAMC 26568 and PAMC 26569T possess genes to utilize nitrate and nitrite and certain monosaccharides and disaccharides. The major fatty acids (>10 %) are summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c; 40.3–40.4 %), C18 : 1 2OH (22.7–23.7 %) and summed feature 2 (C14 : 0 3OH and/or C16 : 1 iso I; 12.0 % in PAMC 26568). The major respiratory quinone is Q-10. The genomic DNA G+C content of PAMC 26568 and PAMC 26569T is 64.6 %. Their distinct phylogenetic position and some physiological characteristics distinguish strains PAMC 26568 and PAMC 26569T from other genera in the family Acetobacteraceae supporting the proposal of Lichenicola gen. nov., with the type species Lichenicola cladoniae sp. nov. (type strain, PAMC 26569T=KCCM 43315T=JCM 33604T).


2020 ◽  
Vol 70 (8) ◽  
pp. 4774-4781 ◽  
Author(s):  
Annemarie Siebert ◽  
Christopher Huptas ◽  
Mareike Wenning ◽  
Siegfried Scherer ◽  
Etienne V. Doll

Three strains of a Gram-stain-positive, catalase-negative, facultative anaerobic, and coccoid species were isolated from German bulk tank milk. Phylogenetic analyses based on the 16S rRNA gene sequences indicated that the three strains (WS4937T, WS4759 and WS5303) constitute an independent phylogenetic lineage within the family Aerococcaceae with Facklamia hominis CCUG 36813T (93.7–94.1 %) and Eremococcus coleocola M1831/95/2T (93.5 %) as most closely related type species. The unclassified strains demonstrated variable growth with 6.5 % (w/v) NaCl and tolerated pH 6.5–9.5. Growth was observed from 12 to 39 °C. Their cell-wall peptidoglycan belongs to the A1α type (l-Lys-direct) consisting of alanine, glutamic acid and lysine. The predominant fatty acids were C16 : 1 ω9c, C16 : 0 and C18 : 1 ω9c and in the polar lipids profile three glycolipids, a phospholipid, phosphatidylglycerol, phosphoglycolipid and diphosphatidylglycerol were found. The G+C content of strain WS4937T was 37.4 mol% with a genome size of ~3.0 Mb. Based on phylogenetic, phylogenomic and biochemical characterizations, the isolates can be demarcated from all other genera of the family Aerococcaceae and, therefore, the novel genus Fundicoccus gen. nov. is proposed. The type species of the novel genus is Fundicoccus ignavus gen. nov., sp. nov. WS4937T (=DSM 109652T=LMG 31441T).


Author(s):  
Yang Gu ◽  
Xiaojun Zhu ◽  
Feng Lin ◽  
Caihong Shen ◽  
Yong Li ◽  
...  

An anaerobic, Gram-stain-positive, rod-shaped, motile and spore-forming bacterium, designated strain LBM18003T, was isolated from pit clay used for making Chinese strong aroma-type liquor. Growth occurred at 20–40 °C (optimum, 30–37 °C), pH 4.5–9.5 (optimum, pH 6.5–7.0) and in the presence of 0.0–1.0 % (w/v) sodium chloride (optimum, 0 %). The predominant fatty acids were C16:0, C14:0, C14:0 DMA and C16:0 3-OH, and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two unidentified phospholipids and nine unidentified glycolipids. Phylogenetic analysis revealed that strain LBM18003T is a novel member of the family Oscillospiraceae . The 16S rRNA gene sequence similarities of strain LBM18003T to its two most closely related species were less than 94.5 % for distinguishing genera, i.e. closely related to Caproiciproducens galactitolivorans JCM 30532T (94.1 %) and Caproicibacter fermentans DSM 107079T (93.2 %). The genome size of strain LBM18003T was 2 996 201 bp and its DNA G+C content was 48.48 mol%. Strain LBM18003T exhibited 67.8 and 68.1% pairwise-determined whole-genome average nucleotide identity values to Caproiciproducens galactitolivorans JCM 30532T and Caproicibacter fermentans DSM 107079T, respectively; and showed 62.2 and 61.0 % the average amino acid identity values to Caproiciproducens galactitolivorans JCM 30532T and Caproicibacter fermentans DSM 107079T, respectively; and demonstrated 46.1 and 41.5 % conserved genes to Caproiciproducens galactitolivorans JCM 30532T and Caproicibacter fermentans DSM 107079T, respectively. The comparisons of 16S rRNA gene and genome sequences confirmed that strain LBM18003T represented a novel genus of the family Oscillospiraceae . Based on morphological, physiological, biochemical, chemotaxonomic, genotypic and phylogenetic results, strain LBM18003T represents a novel species of a novel genus of the family Oscillospiraceae , for which the name Caproicibacterium amylolyticum gen. nov., sp. nov. is proposed. The type strain is LBM18003T (=GDMCC 1.1626T=JCM 33783T).


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3660-3667 ◽  
Author(s):  
Takao Iino ◽  
Koji Mori ◽  
Takashi Itoh ◽  
Takuji Kudo ◽  
Ken-ichiro Suzuki ◽  
...  

A mesophilic, chemoheterotrophic bacterium, strain Fu11-5T, was isolated from tidal-flat sediment from Tokyo Bay, Chiba, Japan. Cells of strain Fu11-5T were facultatively aerobic, Gram-negative, non-sporulating, non-motile and rod-shaped (1.9–6.9 µm long). Strain Fu11-5T grew optimally at 35–37 °C and pH 6.5–7.0 and with 1–2 % (w/v) NaCl. Oxygen and l-cysteine were used as an alternative electron acceptor and donor, respectively. Strain Fu11-5T also grew fermentatively on some pentoses, hexoses and disaccharides and soluble starch. Succinic acid was the major end product from d-glucose. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain Fu11-5T was affiliated with the order Bacteroidales , and its nearest neighbours were members of the genera Meniscus , Prolixibacter , Sunxiuqinia , Mangrovibacterium and Draconibacterium, with 87–91 % sequence similarity. Cell morphology, optimum growth temperature and utilization of sugars of strain Fu11-5T distinguished the strain from phylogenetically related bacteria. On the basis of its phenotypic features and phylogenetic position, a novel genus and species are proposed to accommodate strain Fu11-5T, with the name Mariniphaga anaerophila gen. nov., sp. nov. The type strain of Mariniphaga anaerophila is strain Fu11-5T ( = JCM 18693T = NBRC 109408T = DSM 26910T). We also propose to combine the family Draconibacteriaceae into the family Prolixibacteraceae as a later heterotypic synonym and to place the distinct sublineage of the genus Marinifilum in the family Marinifilaceae fam. nov.


Sign in / Sign up

Export Citation Format

Share Document