Sulfobacillus thermotolerans sp. nov., a thermotolerant, chemolithotrophic bacterium

2006 ◽  
Vol 56 (5) ◽  
pp. 1039-1042 ◽  
Author(s):  
Tat'yana I. Bogdanova ◽  
Iraida A. Tsaplina ◽  
Tamara F. Kondrat'eva ◽  
Vitalii I. Duda ◽  
Natalya E. Suzina ◽  
...  

A thermotolerant, Gram-positive, aerobic, endospore-forming, acidophilic bacterium (strain Kr1T) was isolated from the pulp of a gold-containing sulfide concentrate processed at 40 °C in a gold-recovery plant (Siberia). Cells of strain Kr1T were straight to slightly curved rods, 0.8–1.2 μm in diameter and 1.5–4.5 μm in length. Strain Kr1T formed spherical and oval, refractile, subterminally located endospores. The temperature range for growth was 20–60 °C, with an optimum at 40 °C. The pH range for growth on medium containing ferrous iron was 1.2–2.4, with an optimum at pH 2.0; the pH range for growth on medium containing S0 was 2.0–5.0, with an optimum at pH 2.5. Strain Kr1T was mixotrophic, oxidizing ferrous iron, S0, tetrathionate or sulfide minerals as energy sources in the presence of 0.02 % yeast extract or other organic substrates. The G+C content of the DNA of strain Kr1T was 48.2±0.5 mol%. Strain Kr1T showed a low level of DNA–DNA reassociation with the known Sulfobacillus species (11–44 %). 16S rRNA gene sequence analysis revealed that Kr1T formed a separate phylogenetic group with a high degree of similarity between the nucleotide sequences (98.3–99.6 %) and 100 % bootstrap support within the phylogenetic Sulfobacillus cluster. On the basis of its physiological properties and the results of phylogenetic analyses, strain Kr1T can be affiliated to a novel species of the genus Sulfobacillus, for which the name Sulfobacillus thermotolerans sp. nov. is proposed. The type strain is Kr1T (=VKM B-2339T=DSM 17362T).

2006 ◽  
Vol 56 (2) ◽  
pp. 369-372 ◽  
Author(s):  
A. I. Slobodkin ◽  
T. P. Tourova ◽  
N. A. Kostrikina ◽  
A. M. Lysenko ◽  
K. E. German ◽  
...  

A moderately thermophilic, anaerobic bacterium (strain SB91T) was isolated from a freshwater hot spring at Barguzin Valley, Buryatiya, Russia. Cells of strain SB91T were straight to slightly curved rods, 0·5–0·6 μm in diameter and 3·0–7·0 μm in length. Formation of endospores was not observed. The temperature range for growth was 26–62 °C, with an optimum at 50 °C. The pH range for growth was 5·5–9·5, with an optimum at pH 7·5–8·0. The substrates utilized by strain SB91T in the presence of 9,10-anthraquinone 2,6-disulfonate included peptone, tryptone, Casamino acids, yeast extract, beef extract, casein hydrolysate, alanine plus glycine, alanine plus proline, l-valine and n-propanol. Carbohydrates were not utilized. Strain SB91T reduced amorphous Fe(III) oxide, Fe(III) citrate, Fe(III) EDTA or Fe(III) nitrilotriacetate with peptone, l-valine or n-propanol as an electron donor. Strain SB91T reduced 9,10-anthraquinone 2,6-disulfonate, thiosulfate, elemental sulfur, fumarate and selenite. Strain SB91T survived after exposure to gamma-radiation at a dose of 5·4 kGy. The G+C content of the DNA of strain SB91T was 33 mol%. Analysis of the 16S rRNA gene sequence revealed that the isolated organism belonged to cluster XII of the clostridia. On the basis of its physiological properties and the results of phylogenetic analyses, it is proposed that strain SB91T represents the sole species of a novel genus, Tepidimicrobium; the name Tepidimicrobium ferriphilum gen. nov., sp. nov. is proposed, with strain SB91T (=DSM 16624T=VKM B-2348T) as the type strain.


2012 ◽  
Vol 62 (Pt_11) ◽  
pp. 2565-2571 ◽  
Author(s):  
A. I. Slobodkin ◽  
A.-L. Reysenbach ◽  
G. B. Slobodkina ◽  
R. V. Baslerov ◽  
N. A. Kostrikina ◽  
...  

An extremely thermophilic, anaerobic, chemolithoautotrophic bacterium (strain S95T) was isolated from a deep-sea hydrothermal vent chimney located on the Eastern Lau Spreading Center, Pacific Ocean, at a depth of 1910 m. Cells of strain S95T were oval to short Gram-negative rods, 0.5–0.6 µm in diameter and 1.0–1.5 µm in length, growing singly or in pairs. Cells were motile with a single polar flagellum. The temperature range for growth was 50–92 °C, with an optimum at 74 °C. The pH range for growth was 5.5–8.0, with an optimum at pH 7.0. Growth of strain S95T was observed at NaCl concentrations ranging from 1.5 to 3.5 % (w/v). Strain S95T grew anaerobically with elemental sulfur as an energy source and bicarbonate/CO2 as a carbon source. Elemental sulfur was disproportionated to sulfide and sulfate. Growth was enhanced in the presence of poorly crystalline iron(III) oxide (ferrihydrite) as a sulfide-scavenging agent. Strain S95T was also able to grow by disproportionation of thiosulfate and sulfite. Sulfate was not used as an electron acceptor. Analysis of the 16S rRNA gene sequence revealed that the isolate belongs to the phylum Thermodesulfobacteria . On the basis of its physiological properties and results of phylogenetic analyses, it is proposed that the isolate represents the sole species of a new genus, Thermosulfurimonas dismutans gen. nov., sp. nov.; S95T ( = DSM 24515T = VKM B-2683T) is the type strain of the type species. This is the first description of a thermophilic micro-organism that disproportionates elemental sulfur.


2004 ◽  
Vol 54 (1) ◽  
pp. 227-233 ◽  
Author(s):  
H. Moussard ◽  
S. L'Haridon ◽  
B. J. Tindall ◽  
A. Banta ◽  
P. Schumann ◽  
...  

A thermophilic, marine, anaerobic, chemolithoautotrophic, sulfate-reducing bacterium, strain CIR29812T, was isolated from a deep-sea hydrothermal vent site at the Kairei vent field on the Central Indian Ridge. Cells were Gram-negative motile rods that did not form spores. The temperature range for growth was 55–80 °C, with an optimum at 70 °C. The NaCl concentration range for growth was 10–35 g l−1, with an optimum at 25 g l−1. The pH range for growth was 6–6·7, with an optimum at approximately pH 6·25. H2 and CO2 were the only electron donor and carbon source found to support growth of the strain. However, several organic compounds were stimulatory for growth. Sulfate was used as electron acceptor, whereas elemental sulfur, thiosulfate, sulfite, cystine, nitrate and fumarate were not. No fermentative growth was observed with malate, pyruvate or lactate. The phenotypic characteristics of strain CIR29812T were similar to those of Thermodesulfobacterium hydrogeniphilum, a recently described thermophilic, chemolithoautotrophic sulfate-reducer. However, phylogenetic analyses of the 16S rRNA gene sequences showed that the new isolate was distantly related to members of the family Thermodesulfobacteriaceae (similarity values of less than 90 %). The chemotaxonomic data (fatty acids and polar lipids composition) also indicated that strain CIR29812T could be distinguished from Thermodesulfobacterium commune, the type species of the type genus of the family Thermodesulfobacteriaceae. Finally, the G+C content of the genomic DNA of strain CIR29812T (46·0 mol%) was not in the range of values obtained for members of this family. On the basis of phenotypic, chemotaxonomic and genomic features, it is proposed that strain CIR29812T represents a novel species of a new genus, Thermodesulfatator, of which Thermodesulfatator indicus is the type species. The type strain is CIR29812T (=DSM 15286T=JCM 11887T).


2012 ◽  
Vol 62 (Pt_4) ◽  
pp. 890-894 ◽  
Author(s):  
G. B. Slobodkina ◽  
A. N. Panteleeva ◽  
T. G. Sokolova ◽  
E. A. Bonch-Osmolovskaya ◽  
A. I. Slobodkin

A thermophilic, anaerobic, dissimilatory Mn(IV)- and Fe(III)-reducing bacterium (strain SLM 61T) was isolated from a terrestrial hot spring on the Kamchatka peninsula. The cells were straight rods, 0.5–0.6 µm in diameter and 1.0–6.0 µm long, and exhibited tumbling motility by means of peritrichous flagellation. The strain grew at 26–70 °C, with an optimum at 58–60 °C, and at pH 5.5–8.0, with an optimum at pH 6.5. Growth of SLM 61T was observed at 0–2.0 % (w/v) NaCl, with an optimum at 0.5 % (w/v). The generation time under optimal growth conditions was 40 min. Strain SLM 61T grew and reduced Mn(IV), Fe(III) or nitrate with a number of organic acids and complex proteinaceous compounds as electron donors. It was capable of chemolithoautotrophic growth using molecular hydrogen as an electron donor, Fe(III) but not Mn(IV) or nitrate as an electron acceptor and CO2 as a carbon source. It also was able to ferment pyruvate, yeast extract, glucose, fructose, sucrose and maltose. The G+C content of DNA of strain SLM 61T was 50.9 mol%. 16S rRNA gene sequence analysis revealed that the closest relative of the isolated organism was Carboxydocella thermautotrophica 41T (96.9 % similarity). On the basis of its physiological properties and phylogenetic analyses, the isolate is considered to represent a novel species, for which the name Carboxydocella manganica sp. nov. is proposed. The type strain is SLM 61T ( = DSM 23132T  = VKM B-2609T). C. manganica is the first described representative of the genus Carboxydocella that possesses the ability to reduce metals and does not utilize CO.


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 86-92 ◽  
Author(s):  
O. A. Podosokorskaya ◽  
E. A. Bonch-Osmolovskaya ◽  
A. A. Novikov ◽  
T. V. Kolganova ◽  
I. V. Kublanov

A novel obligately anaerobic, mesophilic, organotrophic bacterium, strain P3M-1T, was isolated from a microbial mat formed in a wooden bath filled with hot water emerging from a 2775 m-deep well in the Tomsk region of western Siberia, Russia. Cells of strain P3M-1T were rod-shaped, 0.3–0.7 µm in width and formed multicellullar filaments that reached up to 400 µm in length. Strain P3M-1T grew optimally at 42–45 °C, pH 7.5–8.0, and with 0.1% (w/v) NaCl. Under optimal conditions, the doubling time was 6 h. The isolate was able to ferment a variety of proteinaceous substrates and sugars, including microcrystalline cellulose. Acetate, ethanol and H2 were the main products of glucose fermentation. The genomic DNA G+C content was 55 mol%. 16S rRNA gene sequence-based phylogenetic analyses showed that strain P3M-1T was a member of the class Anaerolinea , with 92.8 % sequence similarity to Levilinea saccharolytica KIBI-1T. Based on phylogenetic analysis and physiological properties, strain P3M-1T represents a novel species in a new genus, for which the name Ornatilinea apprima gen. nov., sp. nov. is proposed; the type strain of O. apprima is P3M-1T ( = DSM 23815T = VKM B-2669T).


2015 ◽  
Vol 65 (Pt_5) ◽  
pp. 1504-1508 ◽  
Author(s):  
Tomohiro Watanabe ◽  
Hisaya Kojima ◽  
Manabu Fukui

A sulfur-oxidizing bacterium, strain TTNT, was isolated from a Thioploca sample obtained from a freshwater lake in Japan. The isolate shared 97.1 % 16S rRNA gene sequence similarity with an obligately aerobic chemolithoautotroph, ‘Thiobacillus plumbophilus’ Gro7T. Cells were rods, motile, and Gram-stain-negative. The G+C content of the genomic DNA was approximately 66 mol%. Strain TTNT grew over a temperature range of 8–32 °C (optimum 22–25 °C), an NaCl concentration range of 0–133.3 mM (optimum 0–3.3 mM) and a pH range of 5.3–8.6 (optimum pH 6.4–7.0). Strain TTNT was facultatively anaerobic and could utilize nitrate as an electron acceptor. The isolate oxidized tetrathionate, thiosulfate and elemental sulfur as the sole energy sources for autotrophic growth, and could also grow heterotrophically on a number of organic substrates. Based on its phylogenetic and phenotypic properties, strain TTNT represents a novel species of a novel genus, for which the name Sulfuriferula multivorans gen. nov., sp. nov. is proposed. The type strain is TTNT ( = NBRC 110683T = DSM 29343T). Along with this, the reclassification of ‘Thiobacillus plumbophilus’ as Sulfuriferula plumbophilus sp. nov. (type strain Gro7T = NBRC 107929T = DSM 6690T) is proposed. Based on the data obtained in this study, we describe the designations Sulfuricellaceae fam. nov. and Sulfuricellales ord. nov.


2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 1967-1971 ◽  
Author(s):  
A. I. Slobodkin ◽  
A.-L. Reysenbach ◽  
G. B. Slobodkina ◽  
T. V. Kolganova ◽  
N. A. Kostrikina ◽  
...  

A thermophilic, anaerobic, chemolithoautotrophic bacterium (strain S69T) was isolated from a deep-sea hydrothermal vent chimney located on the Eastern Lau Spreading Center and Valu Fa Ridge, Pacific Ocean, at a depth of 1910 m using anoxic medium with elemental sulfur as the only energy source. Cells of strain S69T were Gram-negative short rods, 0.4–0.6 µm in diameter and 1.0–2.5 µm in length, motile with a single polar flagellum. The temperature range for growth was 28–70 °C, with an optimum at 61 °C. The pH range for growth was 5.6–7.9, with optimum growth at pH 6.8. Growth of strain S69T was observed at NaCl concentrations ranging from 0.9 to 5.0 %, with an optimum at 1.8–2.7 (w/v). Strain S69T grew anaerobically with elemental sulfur as an energy source and bicarbonate/CO2 as a carbon source. Elemental sulfur was disproportionated to sulfide and sulfate. Growth was enhanced in the presence of poorly crystalline Fe(III) oxide (ferrihydrite) as a sulfide-scavenging agent. Strain S69T was also able to grow by disproportionation of thiosulfate and sulfite. Sulfate was not used as an electron acceptor either with H2 or with organic electron donors. Analysis of the 16S rRNA gene sequence revealed that the isolate formed a distinct phylogenetic branch within the Deltaproteobacteria . On the basis of its physiological properties and results of phylogenetic analyses, strain S69T is considered to represent a novel species of a new genus, for which the name Dissulfuribacter thermophilus gen. nov., sp. nov. is proposed. The type strain of Dissulfuribacter thermophilus is S69T ( = DSM 25762T = VKM B-2760T).


2021 ◽  
Author(s):  
Takeshi Miyadera ◽  
Hisaya Kojima ◽  
Manabu Fukui

Abstract A novel methylotrophic bacterium, strain Zm11 T , was isolated from reddish brown snow collected in a moor in Japan. Cells of the isolate were Gram-stain-negative, motile and rod-shaped (0.6-0.7×1.2-2.7 μm). Growth was observed at 5–32°C with an optimum growth temperature of 25–28°C. The pH range for growth was 5.4–7.8 with an optimum pH of 6.8. The strain utilized only methanol as carbon and energy sources for aerobic growth. The major cellular fatty acids (>40% of total) were summed feature 3 (C 16:1 ω 7 c and/or C 16:1 ω 6 c ) and C 16 : 0 . The predominant quinone was Q-8. The complete genome of strain Zm11 T is composed of a circular chromosome (2,800,413 bp), with G + C content of 46.4 mol%. Phylogenetic analyses were conducted based on the 16S rRNA gene sequence and conserved proteins encoded in the genome. The results of analyses indicate that strain Zm11 T is a member of the family Methylophilaceae but does not belong to any existing genus. On the basis of its genomic and phenotypic properties, strain Zm11 T (= DSM111909 T = NBRC114766 T ) is proposed as the type strain of a new species in a new genus, Methyloradius palustris gen. nov., sp. nov.


2010 ◽  
Vol 60 (11) ◽  
pp. 2535-2539 ◽  
Author(s):  
Hui-Rong Li ◽  
Yong Yu ◽  
Wei Luo ◽  
Yin-Xin Zeng

Strain ZS314T was isolated from a sandy intertidal sediment sample collected from the coastal area off the Chinese Antarctic Zhongshan Station, east Antarctica (6 ° 22′ 13″ S 7 ° 21′ 41″ E). The cells were Gram-positive, motile, short rods. The temperature range for growth was 0–26 °C and the pH for growth ranged from 5 to 10, with optimum growth occurring within the temperature range 18–23 °C and pH range 6.0–8.0. Growth occurred in the presence of 0–6 % (w/v) NaCl, with optimum growth occurring in the presence of 2–4 % (w/v) NaCl. Strain ZS314T had MK-10 as the major menaquinone and anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0 as major fatty acids. The cell-wall peptidoglycan type was B2β with ornithine as the diagnostic diamino acid. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The genomic DNA G+C content was approximately 67 mol%. Phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain ZS314T represents a new lineage in the family Microbacteriaceae. On the basis of the phylogenetic analyses and phenotypic characteristics, a new genus, namely Marisediminicola gen. nov., is proposed, harbouring the novel species Marisediminicola antarctica sp. nov. with the type strain ZS314T (=DSM 22350T =CCTCC AB 209077T).


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1766-1770 ◽  
Author(s):  
Joon Yong Kim ◽  
Jina Lee ◽  
Na-Ri Shin ◽  
Ji-Hyun Yun ◽  
Tae Woong Whon ◽  
...  

A novel Gram-stain-negative, facultatively anaerobic, non-motile and coccus-shaped bacterium, strain C7T, was isolated from the gut of the butterfly Sasakia charonda. Strain C7T grew optimally at 20–25 °C, at pH 7–8 and with 1 % (w/v) NaCl. The strain was negative for oxidase activity but positive for catalase activity. The 16S rRNA gene sequences of strain C7T and Orbus hercynius CN3T shared 96.8 % similarity. The major fatty acids identified were C14 : 0, C16 : 0, C18 : 1ω7c and summed feature 2 (comprising C14 : 0 3-OH/iso-C16 : 1). The major respiratory quinone was ubiquinone-8 (Q-8). The polar lipids of strain C7T were phosphatidylethanolamine, phosphatidylglycerol, an unidentified phospholipid and two unidentified aminophospholipids. The G+C content of the genomic DNA extracted from strain C7T was 32.1 mol%. Taken together, the phenotypic, genotypic and phylogenetic analyses indicate that strain C7T represents a novel species of the genus Orbus , for which the name Orbus sasakiae sp. nov. is proposed. The type strain is C7T ( = KACC 16544T = JCM 18050T). An emended description of the genus Orbus is provided.


Sign in / Sign up

Export Citation Format

Share Document