scholarly journals Tepidimicrobium ferriphilum gen. nov., sp. nov., a novel moderately thermophilic, Fe(III)-reducing bacterium of the order Clostridiales

2006 ◽  
Vol 56 (2) ◽  
pp. 369-372 ◽  
Author(s):  
A. I. Slobodkin ◽  
T. P. Tourova ◽  
N. A. Kostrikina ◽  
A. M. Lysenko ◽  
K. E. German ◽  
...  

A moderately thermophilic, anaerobic bacterium (strain SB91T) was isolated from a freshwater hot spring at Barguzin Valley, Buryatiya, Russia. Cells of strain SB91T were straight to slightly curved rods, 0·5–0·6 μm in diameter and 3·0–7·0 μm in length. Formation of endospores was not observed. The temperature range for growth was 26–62 °C, with an optimum at 50 °C. The pH range for growth was 5·5–9·5, with an optimum at pH 7·5–8·0. The substrates utilized by strain SB91T in the presence of 9,10-anthraquinone 2,6-disulfonate included peptone, tryptone, Casamino acids, yeast extract, beef extract, casein hydrolysate, alanine plus glycine, alanine plus proline, l-valine and n-propanol. Carbohydrates were not utilized. Strain SB91T reduced amorphous Fe(III) oxide, Fe(III) citrate, Fe(III) EDTA or Fe(III) nitrilotriacetate with peptone, l-valine or n-propanol as an electron donor. Strain SB91T reduced 9,10-anthraquinone 2,6-disulfonate, thiosulfate, elemental sulfur, fumarate and selenite. Strain SB91T survived after exposure to gamma-radiation at a dose of 5·4 kGy. The G+C content of the DNA of strain SB91T was 33 mol%. Analysis of the 16S rRNA gene sequence revealed that the isolated organism belonged to cluster XII of the clostridia. On the basis of its physiological properties and the results of phylogenetic analyses, it is proposed that strain SB91T represents the sole species of a novel genus, Tepidimicrobium; the name Tepidimicrobium ferriphilum gen. nov., sp. nov. is proposed, with strain SB91T (=DSM 16624T=VKM B-2348T) as the type strain.

2006 ◽  
Vol 56 (5) ◽  
pp. 1039-1042 ◽  
Author(s):  
Tat'yana I. Bogdanova ◽  
Iraida A. Tsaplina ◽  
Tamara F. Kondrat'eva ◽  
Vitalii I. Duda ◽  
Natalya E. Suzina ◽  
...  

A thermotolerant, Gram-positive, aerobic, endospore-forming, acidophilic bacterium (strain Kr1T) was isolated from the pulp of a gold-containing sulfide concentrate processed at 40 °C in a gold-recovery plant (Siberia). Cells of strain Kr1T were straight to slightly curved rods, 0.8–1.2 μm in diameter and 1.5–4.5 μm in length. Strain Kr1T formed spherical and oval, refractile, subterminally located endospores. The temperature range for growth was 20–60 °C, with an optimum at 40 °C. The pH range for growth on medium containing ferrous iron was 1.2–2.4, with an optimum at pH 2.0; the pH range for growth on medium containing S0 was 2.0–5.0, with an optimum at pH 2.5. Strain Kr1T was mixotrophic, oxidizing ferrous iron, S0, tetrathionate or sulfide minerals as energy sources in the presence of 0.02 % yeast extract or other organic substrates. The G+C content of the DNA of strain Kr1T was 48.2±0.5 mol%. Strain Kr1T showed a low level of DNA–DNA reassociation with the known Sulfobacillus species (11–44 %). 16S rRNA gene sequence analysis revealed that Kr1T formed a separate phylogenetic group with a high degree of similarity between the nucleotide sequences (98.3–99.6 %) and 100 % bootstrap support within the phylogenetic Sulfobacillus cluster. On the basis of its physiological properties and the results of phylogenetic analyses, strain Kr1T can be affiliated to a novel species of the genus Sulfobacillus, for which the name Sulfobacillus thermotolerans sp. nov. is proposed. The type strain is Kr1T (=VKM B-2339T=DSM 17362T).


2012 ◽  
Vol 62 (Pt_4) ◽  
pp. 890-894 ◽  
Author(s):  
G. B. Slobodkina ◽  
A. N. Panteleeva ◽  
T. G. Sokolova ◽  
E. A. Bonch-Osmolovskaya ◽  
A. I. Slobodkin

A thermophilic, anaerobic, dissimilatory Mn(IV)- and Fe(III)-reducing bacterium (strain SLM 61T) was isolated from a terrestrial hot spring on the Kamchatka peninsula. The cells were straight rods, 0.5–0.6 µm in diameter and 1.0–6.0 µm long, and exhibited tumbling motility by means of peritrichous flagellation. The strain grew at 26–70 °C, with an optimum at 58–60 °C, and at pH 5.5–8.0, with an optimum at pH 6.5. Growth of SLM 61T was observed at 0–2.0 % (w/v) NaCl, with an optimum at 0.5 % (w/v). The generation time under optimal growth conditions was 40 min. Strain SLM 61T grew and reduced Mn(IV), Fe(III) or nitrate with a number of organic acids and complex proteinaceous compounds as electron donors. It was capable of chemolithoautotrophic growth using molecular hydrogen as an electron donor, Fe(III) but not Mn(IV) or nitrate as an electron acceptor and CO2 as a carbon source. It also was able to ferment pyruvate, yeast extract, glucose, fructose, sucrose and maltose. The G+C content of DNA of strain SLM 61T was 50.9 mol%. 16S rRNA gene sequence analysis revealed that the closest relative of the isolated organism was Carboxydocella thermautotrophica 41T (96.9 % similarity). On the basis of its physiological properties and phylogenetic analyses, the isolate is considered to represent a novel species, for which the name Carboxydocella manganica sp. nov. is proposed. The type strain is SLM 61T ( = DSM 23132T  = VKM B-2609T). C. manganica is the first described representative of the genus Carboxydocella that possesses the ability to reduce metals and does not utilize CO.


2012 ◽  
Vol 62 (Pt_11) ◽  
pp. 2565-2571 ◽  
Author(s):  
A. I. Slobodkin ◽  
A.-L. Reysenbach ◽  
G. B. Slobodkina ◽  
R. V. Baslerov ◽  
N. A. Kostrikina ◽  
...  

An extremely thermophilic, anaerobic, chemolithoautotrophic bacterium (strain S95T) was isolated from a deep-sea hydrothermal vent chimney located on the Eastern Lau Spreading Center, Pacific Ocean, at a depth of 1910 m. Cells of strain S95T were oval to short Gram-negative rods, 0.5–0.6 µm in diameter and 1.0–1.5 µm in length, growing singly or in pairs. Cells were motile with a single polar flagellum. The temperature range for growth was 50–92 °C, with an optimum at 74 °C. The pH range for growth was 5.5–8.0, with an optimum at pH 7.0. Growth of strain S95T was observed at NaCl concentrations ranging from 1.5 to 3.5 % (w/v). Strain S95T grew anaerobically with elemental sulfur as an energy source and bicarbonate/CO2 as a carbon source. Elemental sulfur was disproportionated to sulfide and sulfate. Growth was enhanced in the presence of poorly crystalline iron(III) oxide (ferrihydrite) as a sulfide-scavenging agent. Strain S95T was also able to grow by disproportionation of thiosulfate and sulfite. Sulfate was not used as an electron acceptor. Analysis of the 16S rRNA gene sequence revealed that the isolate belongs to the phylum Thermodesulfobacteria . On the basis of its physiological properties and results of phylogenetic analyses, it is proposed that the isolate represents the sole species of a new genus, Thermosulfurimonas dismutans gen. nov., sp. nov.; S95T ( = DSM 24515T = VKM B-2683T) is the type strain of the type species. This is the first description of a thermophilic micro-organism that disproportionates elemental sulfur.


2004 ◽  
Vol 54 (1) ◽  
pp. 227-233 ◽  
Author(s):  
H. Moussard ◽  
S. L'Haridon ◽  
B. J. Tindall ◽  
A. Banta ◽  
P. Schumann ◽  
...  

A thermophilic, marine, anaerobic, chemolithoautotrophic, sulfate-reducing bacterium, strain CIR29812T, was isolated from a deep-sea hydrothermal vent site at the Kairei vent field on the Central Indian Ridge. Cells were Gram-negative motile rods that did not form spores. The temperature range for growth was 55–80 °C, with an optimum at 70 °C. The NaCl concentration range for growth was 10–35 g l−1, with an optimum at 25 g l−1. The pH range for growth was 6–6·7, with an optimum at approximately pH 6·25. H2 and CO2 were the only electron donor and carbon source found to support growth of the strain. However, several organic compounds were stimulatory for growth. Sulfate was used as electron acceptor, whereas elemental sulfur, thiosulfate, sulfite, cystine, nitrate and fumarate were not. No fermentative growth was observed with malate, pyruvate or lactate. The phenotypic characteristics of strain CIR29812T were similar to those of Thermodesulfobacterium hydrogeniphilum, a recently described thermophilic, chemolithoautotrophic sulfate-reducer. However, phylogenetic analyses of the 16S rRNA gene sequences showed that the new isolate was distantly related to members of the family Thermodesulfobacteriaceae (similarity values of less than 90 %). The chemotaxonomic data (fatty acids and polar lipids composition) also indicated that strain CIR29812T could be distinguished from Thermodesulfobacterium commune, the type species of the type genus of the family Thermodesulfobacteriaceae. Finally, the G+C content of the genomic DNA of strain CIR29812T (46·0 mol%) was not in the range of values obtained for members of this family. On the basis of phenotypic, chemotaxonomic and genomic features, it is proposed that strain CIR29812T represents a novel species of a new genus, Thermodesulfatator, of which Thermodesulfatator indicus is the type species. The type strain is CIR29812T (=DSM 15286T=JCM 11887T).


2013 ◽  
Vol 63 (Pt_11) ◽  
pp. 4064-4071 ◽  
Author(s):  
Xin-Qi Zhang ◽  
Zhen-Li Zhang ◽  
Nan Wu ◽  
Xu-Fen Zhu ◽  
Min Wu

A strictly aerobic, Gram-stain-positive, motile and spore-forming bacterium, strain 3nP4T, was isolated from the Puge hot spring located in the south-western geothermal area of China. Strain 3nP4T grew at 38–66 °C (optimum 57–60 °C), at pH 6.0–9.3 (optimum 7.0–7.5) and with 0–4 % (w/v) NaCl (optimum 0–0.5 %). Phylogenetic analysis of 16S rRNA gene sequences, as well as DNA–DNA relatedness values, indicated that the isolate represents a novel species of the genus Anoxybacillus , related most closely to Anoxybacillus voinovskiensis DSM 12111T. Strain 3nP4T had diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and one unidentified phospholipid as major polar lipids and iso-C15 : 0 and iso-C17 : 0 as major fatty acids, which are both typical chemotaxonomic characteristics of the genus Anoxybacillus . The mean DNA G+C content of strain 3nP4T was 39.2±0.95 mol% (HPLC). A distinctive characteristic of the novel isolate was its extreme reliance on vitamin mixture or yeast extract for growth. Based on data from this taxonomic study using a polyphasic approach, strain 3nP4T is considered to represent a novel species of the genus Anoxybacillus , for which the name Anoxybacillus vitaminiphilus sp. nov. is proposed. The type strain is 3nP4T ( = CGMCC 1.8979T = JCM 16594T).


2020 ◽  
Vol 70 (11) ◽  
pp. 5717-5724 ◽  
Author(s):  
Lan Liu ◽  
Ai-Ping Lv ◽  
Meng-Meng Li ◽  
Yu-Zhen Ming ◽  
Jian-Yu Jiao ◽  
...  

Two anaerobic bacteria, designated strains SYSU GA16112T and SYSU GA16107, were isolated from a hot spring in Tengchong County, Yunnan Province, south-west PR China. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains SYSU GA16112T and SYSU GA16107 belong to the family Dysgonamonadaceae. Cells of strains SYSU GA16112T and SYSU GA16107 were Gram-stain-negative, rod-shaped and non-motile. The major fatty acids (>10 %) of strains SYSU GA16112T and SYSU GA16107 were identified as anteiso-C15 : 0 and anteiso-C17 : 0 3OH. The polar lipid profile of strain SYSU GA16112T was found to consist of phosphatidylethanolamine, two unidentified aminophospholipids, two unidentified phosphoglycolipids, two unidentified aminolipids and one unidentified polar lipid, while that of strain SYSU GA16107 consisted of phosphatidylethanolamine, two unidentified polar lipids, three unidentified aminophospholipids, two unidentified phosphoglycolipids and one unidentified aminolipid. The genomic DNA G+C contents of strains SYSU GA16112T and SYSU GA16107 were determined to be 41.90 and 41.89 %, respectively, and the average nucleotide identity value between them was 99.99 %. Based on their morphological and physiological properties, and results of phylogenetic analyses, strains SYSU GA16112T and SYSU GA16107 are considered to represent a novel species of a novel genus, for which the name Seramator thermalis gen. nov., sp. nov. (type strain SYSU GA16112T=CGMCC 1.5281T=KCTC 15753T) is proposed.


2004 ◽  
Vol 54 (3) ◽  
pp. 739-743 ◽  
Author(s):  
Vladimir Gorlenko ◽  
Alexandre Tsapin ◽  
Zorigto Namsaraev ◽  
Tracy Teal ◽  
Tatyana Tourova ◽  
...  

A novel, obligately anaerobic, alkalithermophilic, chemo-organotrophic bacterium was isolated from the sediment of an alkaline hot spring located on Paoha Island in Mono Lake, California, USA. This rod-shaped bacterium was motile via peritrichous flagella. Isolated strains grew optimally in 5–25 g NaCl l−1, at pH 9·0–9·5 and at a temperature of 58°C and were fermentative and mainly proteolytic, utilizing peptone, Casamino acids and yeast extract. Optimal growth was seen in the presence of elemental sulfur, polysulfide or thiosulfate with concomitant reduction to hydrogen sulfide. Sulfite was also formed in an equal ratio to sulfide during reduction of thiosulfate. The novel isolate could also reduce Fe(III) and Se(IV) in the presence of organic matter. On the basis of physiological properties, 16S rRNA gene sequence and DNA–DNA hybridization data, strain PAOHA-1T (=DSM 14826T=UNIQEM 227T) belongs to the genus Anaerobranca and represents a novel species, Anaerobranca californiensis sp. nov.


2005 ◽  
Vol 55 (5) ◽  
pp. 2159-2165 ◽  
Author(s):  
Sofiya N. Parshina ◽  
Jan Sipma ◽  
Yutaka Nakashimada ◽  
Anne Meint Henstra ◽  
Hauke Smidt ◽  
...  

A moderately thermophilic, anaerobic, chemolithoheterotrophic, sulfate-reducing bacterium, strain CO-1-SRBT, was isolated from sludge from an anaerobic bioreactor treating paper mill wastewater. Cells were Gram-positive, motile, spore-forming rods. The temperature range for growth was 30–68 °C, with an optimum at 55 °C. The NaCl concentration range for growth was 0–17 g l−1; there was no change in growth rate until the NaCl concentration reached 8 g l−1. The pH range for growth was 6·0–8·0, with an optimum of 6·8–7·2. The bacterium could grow with 100 % CO in the gas phase. With sulfate, CO was converted to H2 and CO2 and part of the H2 was used for sulfate reduction; without sulfate, CO was completely converted to H2 and CO2. With sulfate, strain CO-1-SRBT utilized H2/CO2, pyruvate, glucose, fructose, maltose, lactate, serine, alanine, ethanol and glycerol. The strain fermented pyruvate, lactate, glucose and fructose. Yeast extract was necessary for growth. Sulfate, thiosulfate and sulfite were used as electron acceptors, whereas elemental sulfur and nitrate were not. A phylogenetic analysis of 16S rRNA gene sequences placed strain CO-1-SRBT in the genus Desulfotomaculum, closely resembling Desulfotomaculum nigrificans DSM 574T and Desulfotomaculum sp. RHT-3 (99 and 100 % similarity, respectively). However, the latter strains were completely inhibited above 20 and 50 % CO in the gas phase, respectively, and were unable to ferment CO, lactate or glucose in the absence of sulfate. DNA–DNA hybridization of strain CO-1-SRBT with D. nigrificans and Desulfotomaculum sp. RHT-3 showed 53 and 60 % relatedness, respectively. On the basis of phylogenetic and physiological features, it is suggested that strain CO-1-SRBT represents a novel species within the genus Desulfotomaculum, for which the name Desulfotomaculum carboxydivorans is proposed. This is the first description of a sulfate-reducing micro-organism that is capable of growth under an atmosphere of pure CO with and without sulfate. The type strain is CO-1-SRBT (=DSM 14880T=VKM B-2319T).


2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 2155-2159 ◽  
Author(s):  
Xiang Zeng ◽  
Xiaobo Zhang ◽  
Lijing Jiang ◽  
Karine Alain ◽  
Mohamed Jebbar ◽  
...  

A hyperthermophilic, anaerobic, piezophilic archaeon (strain DY20341T) was isolated from a sediment sample collected from an East Pacific Ocean hydrothermal field (1° 37′ S 102° 45′ W) at a depth of 2737 m. The cells were irregular cocci, 0.8–1.5 µm in diameter. Growth was observed between 50 and 90 °C (optimum 80 °C), pH 5.0 and 8.0 (optimum pH 7.0), 1 % and 7 % (w/v) sea salts (Sigma, optimum 3 %), 1 % and 4 % (w/v) NaCl (optimum 3 %) and 0.1 and 80 MPa (optimum 30 MPa). The minimum doubling time was 66 min at 30 MPa and 80 °C. The isolate was an obligate chemoorganoheterotroph, capable of utilizing complex organic compounds and organic acids including yeast extract, peptone, tryptone, casein, starch, Casamino acids, citrate, lactate, acetate, fumarate, propanoate and pyruvate for growth. It was strictly anaerobic and facultatively dependent on elemental sulfur or sulfate as electron acceptors, but did not reduce sulfite, thiosulfate, Fe(III) or nitrate. The presence of elemental sulfur enhanced growth. The G+C content of the genomic DNA was 43.6±1 mol%. 16S rRNA gene sequence analysis revealed that the closest relative of the isolated organism was Palaeococcus ferrophilus DMJT (95.7 % 16S rRNA gene similarity). On the basis of its physiological properties and phylogenetic analyses, the isolate is considered to represent a novel species, for which the name Palaeococcus pacificus sp. nov. is proposed. The type strain is strain DY20341T ( = JCM 17873T = DSM 24777T).


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 86-92 ◽  
Author(s):  
O. A. Podosokorskaya ◽  
E. A. Bonch-Osmolovskaya ◽  
A. A. Novikov ◽  
T. V. Kolganova ◽  
I. V. Kublanov

A novel obligately anaerobic, mesophilic, organotrophic bacterium, strain P3M-1T, was isolated from a microbial mat formed in a wooden bath filled with hot water emerging from a 2775 m-deep well in the Tomsk region of western Siberia, Russia. Cells of strain P3M-1T were rod-shaped, 0.3–0.7 µm in width and formed multicellullar filaments that reached up to 400 µm in length. Strain P3M-1T grew optimally at 42–45 °C, pH 7.5–8.0, and with 0.1% (w/v) NaCl. Under optimal conditions, the doubling time was 6 h. The isolate was able to ferment a variety of proteinaceous substrates and sugars, including microcrystalline cellulose. Acetate, ethanol and H2 were the main products of glucose fermentation. The genomic DNA G+C content was 55 mol%. 16S rRNA gene sequence-based phylogenetic analyses showed that strain P3M-1T was a member of the class Anaerolinea , with 92.8 % sequence similarity to Levilinea saccharolytica KIBI-1T. Based on phylogenetic analysis and physiological properties, strain P3M-1T represents a novel species in a new genus, for which the name Ornatilinea apprima gen. nov., sp. nov. is proposed; the type strain of O. apprima is P3M-1T ( = DSM 23815T = VKM B-2669T).


Sign in / Sign up

Export Citation Format

Share Document